NUMERICAL SIMULATION OF NEAR-FIELD MICROWAVE TOMOGRAPHY OF SUBSURFACE DIELECTRIC INHOMOGENEITIES

Gaikovich K. P.

Institute for Physics of Microstructures RAS, GSP-105, Nizhny Novgorod, 607680, Russia, Nizhniy Novgorod State University, 23, Gagarina Ave., Nizhny Novgorod, 603950, Russia Ph.: +7(831)4179464, e-mail: gai@ipmras.ru

Abstract —Method of multifrequency microwave tomography and holography of subsurface dielectric inhomogeneities in the near-field zone based on the solution of inverse scattering problem is studied in numerical simulation with input data calculated from Maxwell equations.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ БЛИЖНЕПОЛЬНОЙ СВЧ ТОМОГРАФИИ ПОДПОВЕРХНОСТНЫХ ДИЭЛЕКТРИЧЕСКИХ ОБЪЕКТОВ

Гайкович К. П.

Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, 607680, Россия Нижегородский государственный университет, Н. Новгород, пр. Гагарина, 23, 603950, Россия тел.: (831)4179464, e-mail: gai@ipmras.ru

Аннотация — Метод многочастотной СВЧ томографии и голографии подповерхностных неоднородностей в ближней зоне, основанный на решении обратной задачи рассеяния, исследуется в численном моделировании с использованием входных данных, рассчитываемых на основе уравнений Максвелла.

I. Введение

В последнее время значительный прогресс достигнут в области ближнепольной электромагнитной томографии и голографии подповерхностных неоднородностей [1-3]. В рамках теории возмущения соответствующая обратная задача рассеяния сводится к решению нелинейного интегрального уравнения, начиная с борновского приближения методом обобщенной невязки на классе комплекснозначных функций Соболева W_2^1 как уравнения Фредгольма 1-го рода [5,6]. Как продемонстрировано в экспериментах [3], для неоднородностей в ближней зоне этот метод позволяет реализовать субволновую разрешающую способность. Однако известно, что использование борновского приближения может приводить к большим погрешностям для неоднородностей с больши-

ми контрастами диэлектрической проницаемости. Для решения обратных задач рассеяния за пределами применимости борновского приближения в [4] был предложен метод двойственной регуляризации – новый метод в теории оптимизации, основанный на принципе Лагранжа, который позволяет решать такие задачи, используя непосредственно исходные уравнения Максвелла [5]. Результаты его применения к более простым одномерным задачам показали его эффективность [6]. Однако оказалось, что для решения трехмерных задач – даже с применением суперкомпьютеров – алгоритм этого метода должен быть предельно оптимизирован.

Оптимизация включает минимизацию размерности сетки дискретизации, точную предварительную локализацию области неоднородности на основе визуализации данных измерений, а также использование наиболее близкого первого приближения. Таким приближением может в частности служить и результат решения задачи на основе интегрального уравнения в борновском приближении. В этой связи особый интерес представляют выполненные в данной работе численные исследования результатов решения задачи в борновском приближении на основе расчетов прямых вычислений рассеянного поля из уравнений Максвелла.

II. Основная часть

Если рассеивающая область $\varepsilon_1(\mathbf{r})$ находится в среде с комплексной диэлектрической проницаемостью $\varepsilon = \varepsilon_0$, то электромагнитное поле для такой неоднородной среды с $\varepsilon(\mathbf{r}) = \varepsilon_0 + \varepsilon_1(\mathbf{r})$ определяется из решения уравнений Максвелла. Используя формализм функций Грина, можно представить полное поле как сумму компонент зондирующего и рассеянного полей [2]:

$$E_{i}(\mathbf{r}) = E_{0i}(\mathbf{r}) + E_{1i}(\mathbf{r})$$

= $E_{0i}(\mathbf{r}) - \frac{i\omega}{4\pi} \int_{V'} \varepsilon_{1}(\mathbf{r}') E_{j}(\mathbf{r}') G_{ji}^{21}(x - x', y - y', z, z') d\mathbf{r}'$ (1)

где ω - циклическая частота, c – скорость света где $G_{ij}^{12} = {}^{\parallel}G_{ij}^{12} + {}^{\perp}G_{ij}^{12}$, $G_{ji}^{21} = {}^{\parallel}G_{ji}^{21} + {}^{\perp}G_{ji}^{21}$ - компоненты тензоров Грина для распространения в прямом и обратном направлении – суммы компонент для ТЕ (\perp) и TH(\parallel) – поляризаций; j_i - функция распределения токов в источнике; используется правило суммирования по повторяющимся индексам (i, j = x, y, z).

Постановка обратной задачи рассеяния может быть основана на решении (1) как нелинейного интегрального уравнения 1-го рода по данным многочастотных измерений рассеянного поля в двумерной области над поверхностью среды с неоднородностью. Как было показано в [2], это трехмерное уравнение в борновском приближении приобретает вид свертки по поперечным координатам при условии жесткой связи приемной и передающей антенны, и преобразование Фурье сводит его к одномерному интегральному уравнению Фредгольма 1-го рода относительно компонент глубинного профиля поперечного спектра неоднородности.

Этот подход был применен в экспериментальных исследованиях [3], где в решаемом уравнении выполнен учет передаточных функций измерительной системы и для селекции вклада в сигнал подповерхностной неоднородности выполнена трансформация многочастотных данных в синтезированный псевдоимпульс [3]:

$$s(x, y, t) = \int_{\Delta \omega} s(x, y, \omega) \exp(i\omega t) d\omega, \qquad (2)$$

в котором вместо временного параметра удобнее использовать параметр эффективной глубины рассеяния z_s согласно $s(x, y, z_s) =$

 $s(x, y, t = -2z_s \operatorname{Re} \sqrt{\varepsilon_0 / c})$. Поперечное фурьепреобразование приводит задачу в борновском приближении к одномерному интегральному уравнению

$$s(k_x, k_y, z_s) = \int_{z'} \mathcal{E}_1(k_x, k_y, z') K_1(k_x, k_y, z', z_s) dz', \quad (3)$$

решение которого для всех пар спектральных компонент после обратного фурье-преобразования приводит к искомому трехмерному распределению:

 $\varepsilon_{1}(x, y, z) = \iint \varepsilon_{1}(k_{x}, k_{y}, z) \exp(ik_{x}x + ik_{y}y)dk_{x}dk_{y}$. (4) Как показано в [3], для объектов с однородной

внутренней структурой $\mathcal{E}_1 = \mathcal{E}_t$ можно определить форму поверхности, используя явное представление для одномерного обратного фурье-преобразования решения (3) по одному из спектральных параметров:

$$\varepsilon_1(k_y, x(x), z) = \int_{-\infty}^{\infty} \varepsilon_1(k_x, k_y, z) \exp(ik_x y) dk_y$$

= $f(k_y, x_1(y, z), x_2(y, z), z),$ (5)

из решения которого как трансцендентного комплекснозначного уравнения форма объекта получается в виде двух функций $x_1(y, z), x_2(y, z)$ в каждом сечении *z* = *const*.

Fig. 1. (a) field amplitude for the concrete target 4x4x3cm³ in soil; (b) scattered component field

Для численного моделирования использовались расчеты «данные измерений» в диапазоне 1,6 – 7 ГГц для измерительной системы [3]. На рис.1*а* показано распределение амплитуды электрического поля на частоте 1,6 ГГц вокруг зондируемого объекта из цемента размером 4 x 4 x 3 см³ в жидком масле, рассчитанного для излучающей bow-tie антенны, использованной нами в [3]. На рис.1*b* представлена только компонента рассеянного поля. Можно видеть, что зондирующее поле мало искажается внутри объекта в ближней зоне, поэтому и его вторичное рассеяние мало. На более высоких частотах диапазона размер ближней зоны сокращается, и вторичное рассеяние постепенно растет. Тем не менее, результаты решения задач томографии и голографии, полученные при уровне случайной погрешности 5% из (3)-(5), демонстрируют хорошее качество восстановления (рис.2).

Рис. 2. а – поперечное распределение псевдоимпульса для объекта на рис.1; b - томографический разрез на глубине середины неоднородности; с – голографическое изображение половины объекта, описываемой функцией x₁(y, z).

Fig. 2. (a) transversal section of pseudopulse for the target in Fig. 1; (b) tomography section at the center of the depth position of the target; (c) holography image of the half-target described by the function $x_1(y, z)$.

Можно видеть, что использование борновского приближения при решении задачи ближнепольной СВЧ томографии в рассмотренном случае с достаточно типичными параметрами объекта и среды привело к хорошим результатам, хотя на рис..2с. на больших глубинах за объектом и видны некоторые артефакты, связанные с влиянием вторичного рассеяния. Поэтому для многих приложений результат решения задачи в борновском приближении для объектов такого типа является вполне удовлетворительным, а также, по всей вероятности, может служить достаточно хорошим первым приближением для более строгих методов анализа.

III. Заключение

Результаты численного моделирования ближнепольной СВЧ томографии на основе решения интегрального уравнения в борновском приближении продемонстрировали, что существует широкая область параметров неоднородностей, где влияние вторичного рассеяния является незначительным, что позволяет, как применять такое решений непосредственно, так и использовать его в качестве первого приближения для последующего анализа.

Работа выполнена при поддержке РФФИ, гранты. №13-07-97028_р_Поволжье и №13-02-12155_офи_м, а также программы Российской Академии Наук

IV. References

- [1] Gaikovich K.P. Subsurface near-field scanning tomography, *Physical Review Letters*, 2007, vol. 98, No. 18, pp.183902.
- [2] Gaikovich K.P., Gaikovich P.K. Inverse problem of near-field scattering in multilayer media, *Inverse Problems*, 2010, vol. 26, No. 12, pp. 125013.
- [3] Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Badeev V.A. Pseudopulse near-field subsurface tomography, *Physical Review Letters*, 2012, vol. 108, No. 16, pp. 163902.
- [4] Gaikovich P.K., Sumin M.I., Gaikovich K.P. One-dimensional inverse scattering problem. 13th International Conference on Transparent Optical Networks (ICTON-2011), Stockholm, Sweden, 2011, pp. We.A2.4.
- [5] Sumin M.I. 'Parametric Dual Regularization in a Nonlinear Mathematical Programming', in Advances in Mathematics Research, Volume 11, Chapter 5, New-York, Nova Science Publishers Inc., 2010. pp. 103-134.
- [6] Gaikovich K.P., Gaikovich P.K., Sumin M.I. Inverse scattering problem in pseudopulse diagnostics of periodic structures. 4th Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET-2012) Kharkiv, Ukraine, 2012, pp. 390-393.