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Abstract 
A method of the near-field scanning tomography is developed for the microwave di-

agnostics of the 3D subsurface structure of permittivity. This method uses data of 2D 
scanning over lateral co-ordinates above the ground surface with the dipole emitter-
receiver system. Measurements at several wavelengths provide the necessary depth sen-
sitivity. The approach to the near-field inverse scattering problem based on the plane 
wave decomposition of proper Green functions is in use here with taking into account 
transfer functions of antennas designed for the microwave subsurface sounding. Results 
are presented for the tomography of 3D permittivity distribution originated by the ice 
sample buried in the sand. 
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tomography, permittivity 

1. INTRODUCTION 
Methods of active and passive electromagnetic subsur-
face sounding make possible to determine the permit-
tivity structure and temperature distribution inside the 
studied media [1]. The two-dimensional (2D) scanning 
above the surface is used typically to detect and visual-
ize (obtain the 2D image) of buried objects. No 
processing is needed for this simple application.  

A more complicated task is to retrieve one-
dimensional distributions (profiles) of parameters. In 
this case the received signal should be depth-sensitive 
and measured in dependence on the corresponding pa-
rameter (depth-of-formation parameter). It can be the 
pulse delay time or frequency (at coherent sounding). 
Pulse methods are effective for multilayered structures; 
coherent methods are more suitable for continuous pro-
files. Profiles are obtained from solutions of corres-
ponding integral equations; methods of regularization 
are in use to solve these ill-posed inverse problems [1].  

Tomography methods (retrieval of 3D structures) 
lead to much more complicated problems. The 2D lat-
eral scanning should be carried out in dependence on a 
depth-of-formation parameter; the inverse problem is 
reduced to the solution of the 3D integral equations of 
the 1-st kind with the 6D kernel. It is clear that 
straightforward methods of solution lead to hard re-
strictions on achievable dimensions of the region of 
retrieval and, hence, to the limitation of the achievable 
resolution. For far-field measurements there is also the 
known Rayleigh limitation of resolution.  

In considered here method of coherent microwave 
near-field tomography of the subsurface permittivity, 
above-mentioned difficulties have been surmounted. 
Measurements of the scattered signal for an ice piece 
buried in the sand and serving as a target have been 

carried out using experimental set-up including vector 
network analyzer Agilent E5071B, two identical bow-
tie antennas [2] in bi-static configuration, operating in 
the frequency range of 1.7 to 7.0 GHz and sandbox.  

The frequency serves here as the depth-of-formation 
parameter that determines the depth sensitivity. In order 
to obtain the 3D information about the target, a C-scan 
has to be obtained. This is achieved by collecting a 
series of A-scans (801 points over the frequency range) 
on a horizontal survey lines (11×15 measuring points 
through 2 cm) over the sandbox surface.  

To retrieve the 3D distribution of the permittivity, 
we use the general approach to the near-field scanning 
tomography [3] and its application to the near-field 
electromagnetic scattering [4] based on 2D lateral plane 
wave deconvolution of corresponding Green functions 
that reduces the initial 3D integral equation of the per-
turbation theory to the one-dimensional equation rela-
tive to the depth profile of the lateral spectrum of 
permittivity. This approach overcomes problems of the 
solution of 3D integral equations and leads to a high-
performance mathematically consistent algorithm based 
on the Tikhonov’s method of generalized discrepancy. 

2. THEORY 
The proposed measurements scheme with the fixed 
emitter-receiver relative position has an important ad-
vantage – variations of the received signal (complex 
amplitudes) are related to the scattered field component 
only. So we use in the analysis the difference Δs be-
tween the signal above the sample region and outside it. 
This difference is a convolution of the apparatus func-
tion and the scattered field distribution E1(x,y,ω), so the 
lateral spectrum (2D Fourier transform over x, y) of Δs 
is: 
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where ω=2πf. Then, to solve the tomography problem, 
we obtain the spectrum of  E1. 

Let us consider the general case of multilayered di-
electric medium following [4]. If the scattering region 
is embedded in i-th layer with 00 iε ε=

( ) iε ε

( )0E r

, the complex 

permittivity can be written as . The 

reference (unperturbed) field  that is used in 
sounding is determined by the proper Green tensor: 

0 1 ( )ε= +r r
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where ( )j r is the current distribution in the source an-
tenna. Using the plane wave decomposition of (2) over 
x and y, it is possible to obtain  in any layer. 
Above the scattering region, the electric field  is 
obtained from the Fredholm equation of the 2-nd kind 
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that has the solution 
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The resolvent R is determined by the known Neu-

mann series. Equations (2), (4) solve the direct problem 
of electrodynamics. The proper way to begin the study 
is to use the Born approximation, where the scattered 
field  (the second term in (4)) is determined as  ( )1E r
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The equation (5) isn’t, in general, a convolution eq-

uation over lateral co-ordinates relative to ε1, but we 
use the measurement scheme proposed in [4] that 
makes it possible to reduce (5) to the convolution equa-
tion. In this scheme the structure of sounding field is 
invariable relative to the receiver position because we 
fix the source-receiver vector . In this case the ref-
erence field (2) in (5) can be written as  

δr

                                                                            (6)                  
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This representation reduces the 3D integral equation (5) 
to the convolution equation over lateral co-ordinates 

and, after the 2D Fourier transform – to the desired 
one-dimensional integral equation relative to the depth 
profile of the lateral spectrum of 1ε :        
                                                                                    (7) 
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for each pair of lateral spectral components. Here  
are components of the lateral 2D Fourier transform of 
the Green function G that determine the contribution of 
the jth component of the source to the ith component of 
the field at the receiver position in the kth layer and the 
position of the sounded region in the lth layer. Also, we 
have taken into account that in our measurements the 
source and the receiver have the same (up to an unes-
sential constant multiplier) transfer function 
(

lk
jig

( (, , ) , , )i x y i x yF k kk j kω ω= ). The effect of the spec-
trum shift in (7) makes it possible to realize the subwa-
velength resolution at near-field measurements.  

The equation (7) is a Fredholm integral equation of 
the 1-st kind with the kernel that depends on the fre-
quency (depth-of-formation parameter). To retrieve 
these depth profiles, the mathematically consistent al-
gorithm [4] based on the Tikhonov’s method of genera-
lized discrepancy has been applied. Finally, when the 
spectrum is retrieved, the desired 3D structure of per-
mittivity is obtained by the 2D inverse Fourier trans-
form: 
  

( , , ) ( , , ) exp( ) .x y x y x yx y z z i x i y d dε ε κ κ κ κ κ κ= +∫∫    (8) 

 
It is possible to generalize the solution beyond the 

Born approximation, using (6) and (7) in the equation 
of perturbation theory (3) [4]. 

3. MULTIFREQUENCY MICROWAVE NEAR-
FIELD SCANNING TOMOGRAPHY 

Using the equation (7) for the 2-layrered media (a half 
space with an inhomogeneous region), we have realized 
the method of multifrequency tomography based on the 
2D lateral scanning of ( , , )s x y fΔ  in the frequency 
band of 1.7 to 7.0GHz. In following analysis, data have 
been used for only six chosen frequencies: 1.7, 2.76, 
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3.82, 4.88, 5.94, 7.0 GHz. Antennas (two identical 
bow-tie transmitting and receiving antennas with the 
length of arms 3.8 cm and the width of 5.4 cm, placed 
in the y-direction; distance between antenna centers of 
7.5 cm) were scanning together in the rectangle x-y 
area. The target with sizes 10×10×4 cm has been buried 
in the sand at the depth z = –9 cm.  

Results are in a good enough correspondence with 
the real position and form of the ice sample and with 
permittivity variations related with the ice in the sand 
(εice = 2;  εsand = 4.3). Horizontal section of the retrieved 
permittivity tomogram at the depth of the buried target 
is shown in Fig.3.  

 

In Fig.1 the scanning results at the frequency f2 = 
2.76 GHz (wavelength 10.83 cm) are shown. 

 

 

Fig. 3. Horizontal section of the retrieved 3D permittiv-
ity (tomogram) 1( , )x yε at z = – 9 cm. 

 
Again, taking into account a high enough level of 

measurement errors, results are in a reasonable corres-
pondence with the real position and form of the ice 
sample.  

Fig. 1. Two-dimensional signal distribution at the fre-
quency 2.76 GHz – result of the scanning above 
the region with the buried ice target. In conclusion, we have applied a new method of 

near-field multifrequency coherent tomography in the 
microwave range to retrieve the subsurface 3D struc-
ture of permittivity. Our first results show the feasibili-
ty of this method. 

 
One can see the microwave image of the buried ice 

target. This result shows the sensitivity of measure-
ments to the subsurface inhomogeneous region. Also, it 
gives us the estimation of the relative error level (about 
0.2) that determines the regularization parameter of the 
Tikhonov’s method in the processing.  

4. PERMISSION TO PUBLISH 
The authors are responsible for all material contained in 
the manuscript they submit.  Results of 2D scanning at 6 frequencies have been 

used to solve the integral equation (7) relative to the 
depth profile of the lateral spectrum of permittivity 
perturbation 1( , , )x yk k zε  for each pair of spectral com-
ponents. Then, from (8), we have the desired 3D struc-
ture (tomogram) of ε1(x,y,z). In Fig.2 the vertical 
section of the retrieved 3D permittivity is presented. 
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Fig. 2. Vertical section of the retrieved 3D permittivity 
(tomogram) 1( , )x zε at y = 16 cm. 


