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ABSTRACT 

New theoretical approach is proposed for solving inverse problem of dielectric permittivity (i.e. 
refractive index) retrieval by reflected field. It is based on approximate solution of an integral 
equation, obtained by combining the integral equation for the electromagnetic field inside the object 
with integral expression, which determines the diffracted field in the external region from the field 
inside it. The solution based on the Tichonoff�s theory of ill-posed problems is proposed. Also a 
simple scheme for fast estimation of the object permittivity profile has been worked out.  

 

1. INTRODUCTION 

Retrieval of material parameters such as refractive index (i.e. dielectric permittivity) profile is 
important in optical devices and systems for testing fabricated devices in the view of complicated 
technology, which makes sometimes impossible an accurate realization of refractive index profiles, 
especially if the profiles are continuous. Fast methods of retrieval can be attractive for application in 
optimization design problems, as well as for monitoring measurements.We propose a method based on 
approximate solution of integral equation for external field in 1D, valid for rather thin objects. This 
equation solution is an expression for the external (reflected) field, determined after the internal one. It 
allows excluding the internal field from the initial internal equation of the diffraction problem, 
obtaining then an equation connecting the external field and the object parameters. The solution 
provides algorithms for the permittivity profile determination. 

 

2. MATHEMATICAL BACKGROUND 
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enables one to obtain the following integral equation 
for the field by Green�s function approach: 
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This equation has the following representation for the 
internal field for x>0 (see Fig.1 for the problem 
geometry and accepted notations): 
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For the external field (x<0) it takes a form of expression for the external field, determined after the internal 
one: 
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0 ,  where  r  is a complex-value reflection coefficient. 

Incident field  E x ei k x
0 ( ) = .  

Combining expressions (1) and (2), the following integral equation for the internal field can be obtained: 
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Its solution can be obtained by convergent iterations, determining then the internal field after the reflected 
one. This solution substitution into the equation (2) yields the following integral equation for the 
permittivity profile: 

(4) 
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Fig.1. Problem geometry and notations 
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3. SOLUTION OF INTEGRAL EQUATION 

A very complicated nonlinear integral equation of the 1-st kind (4) could be solved using approach 
developed in [1] if the reflection coefficient r as a function of frequency ν or incident angle θ (or both) have 
been measured. It is possible to express (4) as 
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where θ)ν,,x,ε~K( ′  is а nonlinear kernel of the integral equation (4). If there is the convergence, in the first 
guess of the algorithm proposed in [1] an arbitrary model profile could be used in the kernel. In the next 
iteration step the retrieved profile should be used. Each of iterations consists of the solution of Fredholm 
integral equation of the 1-st kind. It is a well-known ill-posed problem. To solve this problem it is necessary 
to use some additional a priori information about the exact solution. One of the most suitable methods is 
Tichonoff�s method of generalized discrepancy [2], which implies that the exact solution belongs to the set 
of functions summable with a square that also have generalized derivatives also summable with a square.  

In the case of 1D medium as multi-layered, the permittivity profile can be determined as  
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, where aj and aj+1  are coordinates of the left and right 

boundaries of  j 
th layer, h is the Heviside�s step function. 

If we consider only the first term of the sum (one iteration in the integral equation solution) and assume that 
ja~∆ ≡ ~ ~a ai i− −1 <<1 (where  jjj aka~ ≡  is the normalized width of the k-th sublayer), we obtain a very simple 

equation for the local permittivity values: 
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k  is normalized thickness of kth sub-layer. The reflection 

coefficient and the incidence frequency are contained in the coefficients C: ϕω= sinC1    , 

ϕω= cosC 2
2 ,   ϕω= sinC 3

3 . After solving this equation for different incident frequencies or 
different incidence angles the permittivity of each sub-layer can be obtained from  the system of linear 
algebraic equations. Their number is equal to the number of the considered sub-layers, and so the 
computational procedure is very fast. 
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