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ABSTRACT 
Inverse scattering problems are considered for inhomogeneous dielectric structures with absorption. The 

retrieval of the complex permittivity is based on the solution of 3D complex-valued integral equations that are 
reduced to convolution equations with respect to lateral co-ordinates using the plane wave decomposition of 
Green functions. Then, the inverse problem is reduced to one-dimensional integral equation of the 1-st kind 
relative to the depth profile of the lateral spectrum of complex permittivity. To solve this ill-posed problem for 
each pair of spectrum components, a regularization method based on the Tikhonov’s theory has been worked out 
for complex-value functions in Hilbert spaces. Finally, using this method, the desired solution is obtained by the 
inverse Fourier transform. Numerical results of the algorithm application to the coherent scanning tomography of 
absorbing targets buried in multilayer media are demonstrated.  
Keywords: inverse problem of scattering, scanning tomography, absorbing inhomogeneities  

1. INTRODUCTION 
The general scheme of the scanning tomography [1] based on the lateral decomposition of 3D integral 

equations that has been developed for the near-field inverse scattering problem of inhomogeneities in multilayer 
media [2]. This approach has been used to develop a method of coherent electromagnetic tomography that has 
been studied numerically, including the case of the perfect lens tomography [3] that can enhance the penetration 
of the subwavelength sounding. The method of data acquisition at the condition of the fixed emitter-receiver 
distance, invented in [2], reduces the 3D integral equation for the scattered field to a convolution equation over 
lateral co-ordinates that makes possible, using the Fourier transform, to reduce the initial 3D problem to the one-
dimensional integral equation that should be solved for each pair of spectral components. Starting with the Born 
approximation, this method can be generalized beyond this approximation. In [2,3], symmetry properties of 
Green functions have been used to solve the problem for real-value permittivity. This method has been applied in 
the multi-frequency subsurface tomography of underground objects [4]. The theory has been developed for 
complex-value permittivity of inhomogeneities, but there were no suitable algorithms to solve the complex 
integral equation. In this paper, an effective algorithm is developed to solve complex-value Fredholm integral 
equations of the 1-st kind, and it is used in the tomography simulation of absorbing targets. The possibility to get 
new information about the material of sounding inhomogeneities is demonstrated.     

2. INVERSE PROBLEM OF SCATTERING 
Let us consider a multilayer (in z-direction) medium. If the scattering region is embedded in the lth layer of the 
multilayer structure 0lε ε= , 0lμ μ= , the complex permittivity in this layer can be written as 

.  The reference (unperturbed) field  that is used in the sounding is determined by the 
proper Green tensor (that includes near-field components): 
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where ( )j r is the current distribution in the source. Using the plane waves’ decomposition of (1) over lateral co-

ordinates, it is possible to obtain  in any layered medium [2]. In the presence of the scattering region, the 

electric field can be expressed as the sum of the reference and the scattered fields :  
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and, in frameworks of perturbation theory, can be determined by known Neumann series starting with the Born 
approximation:  
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The solution of the inverse problem requires the solution of the corresponding 3D non-linear integral equation 
(3) that can be solved iteratively, starting with the Born approximation (2), where a method proposed in [2] can 
be applied. The main idea of this method is to reduce this equation to a convolution equation over lateral co-
ordinates. For this, it is enough to fix the source-receiver spacing δ . At this condition, the sounding field 
structure will be invariable relative to the receiver position that is a very suitable for measurements because all 
observed variations can be related only to studied inhomogeneities. In this case, it appears possible to reduce the 
3D integral equation to 1D integral equation relative to the depth profile of the lateral spectrum of 

r

1ε [2]:   
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where  are components the lateral 2D Fourier transform of the Green function G that determine the 
contribution of jth component of the source to ith component of the field at the receiver position  in the kth layer 
and the position of the sounded region in the lth layer. The convenient summation over repeated indices (i, j = x, 
y, z) is implied. The proposed sounding at the chosen source-receiver position is sensitive to evanescent 
components in the scattered field (at ), hence the subwavelength resolution of this 
tomography can be achieved. The problem consists of the solution of the one-dimensional Fredholm integral 
equation of the 1-st kind (4) relative to the vertical profile of permittivity for each pair of lateral spectral 
components. The kernel of this equation depends on the signal frequency or on the receiver vertical position z of 
the scanning level. Both parameters can be used in multi-frequency or multilayer methods of tomography [2-4] 
as depth-of-formation parameters that determine the sensitivity of the sounding in the vertical direction.  
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To retrieve depth profiles of the complex permittivity perturbation 1( , , )x yk k zε ′  from the one-dimensional 
Fredholm integral equation of the 1-st kind (4), a mathematically consistent algorithm based on the Tikhonov’s 
theory of ill-posed problems has been developed. For the case of multi-frequency tomography, the equation (4) 
is expressed as: 
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 It is possible to solve this equation, using the generalized discrepancy principal on complex Hilbert spaces 
(see, for example, in [5]). In operator form:   
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where 1Eδ   is data vector measured with errors 1Eδ that satisfy 
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where 1( )E ω corresponds to the exact solution 1( )zε , ωΔ is the frequency band of analysis.  It is necessary to 
take into account errors of the kernel related to discretization as well as to the error of the Born approximation:  
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where  corresponds to the approximate kernel. Both kinds of error lead to the incompatibility of data with 
the equation that should be taken into consideration as an additional contribution to errors: 

hK
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The approximate solution 1
αε is obtained by minimizing of the smoothing functional  
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where the regularization parameter α is obtained from the one-dimensional nonlinear equation of the generalized 
discrepancy   
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In above expressions x  is a norm of a function as an element of the complex Hilbert functional space L2 (the 
space of square-integrable functions) or W21 (the complex Hilbert space of square-integrable complex-value 
functions with square-integrable generalized derivatives). Particularly, in the expression (10), one has  
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max minz z zΔ = − . The error parameter ( )22

1 hE μδ δ δ= + + δ  includes all above noted error components. To 
minimize the functional (10), the method of conjugate gradients projection has been applied that achieves the 
minimum at the finite number of steps. The regularization parameter is a monotonous function of δ , so the 
chord method was applied to solve (11). The main advantage of the developed approach is the convergence of 
the approximate solution to the exact solution in -space (known also as the Sobolev’s space) at 1

2W 0δ → in the 
integral metric L2. According the Sobolev’s including theorem, this leads to the uniform convergence of the 
solution (in C-metric). As it was shown in [5], it makes possible to use results of single numerical simulations for 
typical cases, and they will be valid for the estimation of the retrieval accuracy in considered conditions. It is 
important to stress again that other methods inevitably need for fitting, and, hence, they are case sensitive.  

At the solution of (5) in the k-space, the regularization parameter is determined by the integral error of 
measured lateral spectrum of the scattered field. This spectrum error can be estimated by the known integral 
error of the measured signal using the Plansherel’s theorem. Finally, when the problem is solved for each pair of 
spectral components, the tomography result (desired 3D structure of permittivity) is obtained by the inverse 
Fourier transform: 
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3. NUMERICAL SYMULATION 
Using the described algorithm to solve the equation (5), we have realized the method of multifrequency 

tomography based on the 2D lateral scanning of  (where f=ω/2π) at five frequencies 

 in the region 1.5 – 7.5 GHz for the three-layered dielectric medium (see in Fig.1). The 
scheme with the source-receiver position in the waveguiding layer 2 with water-like dielectric parameters is 
considered. Inhomogeneous absorbing targets are located in layer 3 that has “living tissues” dielectric 
parameters.  

1 ( , , )xE x y f
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Two different targets are studied: one has a continuous distribution of the complex permittivity with the 
maximum at z = zm; the second is a homogeneous absorbing dielectric of a parallelepiped form. Different 
distributions have been chosen to simulate real and imaginary parts of the complex permittivity of the continuous 
target – the maximum of the ring-shaped distribution of the imaginary part is located outside the main part of the 
real part distribution, so it is possible to see both distributions in the single image.  

All sizes are given at the scale of the shortest wavelength λ5=0.43 cm in the layer 2 (arrow marked in Fig.1). 
This wavelength in the layer 2 is much less than the corresponding free-space wavelength, so we achieve a better 
resolution (the spectrum of evanescent waves is broader). In our simulation, the point source 

 is scanning over x, y in the layer 2 in the plane z = 0 0( ) (zj zδ δ′′ ′′− − = − −j r r δr r r z )z 50.1sz λ= − , i.e. 

below the interface and at the vertical distance 50.1zδ λ= −  from the point, where the x-component of the 

scattered field 1 ( , , )x sE x y z zδ−  is measured at five frequencies. To simulate measurement errors, the 
normally distributed random noise (5% of the scattered field in the integral metric) is added.  

 
 

 



 
Figure 1. Perfect lens tomography (vertical section). Scheme and simulation results of multifrequency near-field 

  

to

tomography for the three-layered medium (vertical section y = 0. Layer 1: (left) range of frequencies is given. 
Layer 2: (left) frequency distribution of the “measured” scattered field in the arrow marked range of scanning; 
(center) source-receiver system. Layer 3: (left) initial distribution of inhomogeneities; (center) z-component of 

the probing field; (right) retrieved distribution of inhomogeneities (tomogram).The imaginary part of the 
permittivity can be seen as a grayscale shadow around the real part of the permittivity of the continuous target. 

Results of the tomography in the horizontal plane are shown in Fig.2. It is seen that the horizontal resolution of 
mography is yet better than that in the vertical direction. 

 
Figure 2. Simulation of multifrequency near-field tomography for the three-layered medium 

4. CONCLUSIONS 
e proposed method of the coherent multi-frequency tomography for absorbing targets is 
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