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 Abstract- The results of applying stochastic spectral theory to the temperature 

distribution and thermal radio emission of a half-space medium, are presented. Analytic 

closed-form expressions for the covariance functions of the temperature profile and the 

brightness temperature, represented as one-dimensional integrals of the spectrum of the 

surface temperature,  have been obtained. 

 

1. Introduction 

 The results of the simultaneous solution of radiative transfer and thermal conductivity equations, 

obtained in previous works [1,2], have been used to develop a stochastic theory of physical temperature 

and thermal radioemission of a medium considering the surface temperature as a random function of time 

[3]. This theory provides all the covariance functions and related statistical parameters as linear integrals 

of the surface temperature covariance function. The integral expressions obtained were of the convolution 

type, hence it was convenient to apply the spectral approach for the ensuing analysis. This paper extends 

the previous work by providing much simpler expressions for all second-order statistical parameters in the 

form of one-dimensional integrals. For the specific case of an exponential surface temperature covariance 

function explicit closed-form expressions for some parameters are obtained. 

 

2. Problem formulation 

 Consider a homogeneous  half-space  z ≤ 0 with the following constant parameters: (i) thermal 

diffusion coefficient a2 , and (ii) electromagnetic absorption coefficient γ .  We allow that γ can depend on 

the wavelength λ). Two expressions [3] are used in the following analysis. The first of them determines 

the temperature profile inside the half-space as a function of depth and time for a temperature boundary 

condition for T(0,t) =T0(t) : 
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The second is the expression for  brightness temperature of upward thermal radioemission as functional of 

surface temperature [2]: 
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Without lost of generality , we suppose that the surface reflection coefficient is zero. 

 Noting that both of the expressions (1) and (2) are equations of the convolution type               

( y(t) = 0∫
∞
x(t-τ)hx(τ)dτ ) it follows that the  Fourier transform  of  the kernel  hx(τ) determines the  

spectral  transfer   function Hx(iω) = -∞∫
∞
hx(τ)exp(-iωτ)dτ, where hx(τ) = 0 for τ < 0. From (1) and (2) 

one has respectively: 
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 The modulus square of (3) and (4)  are the power spectral transfer functions: 
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and will be used extensively, in the following analysis. 

   

3. Derivation of statistical parameters 
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 If the boundary condition for the temperature is a random stationary function with  average  value     

〈T0〉,  mean square deviation   σT0, and  autocovariance   function  BT0T0(τ)=〈(T0(t)-〈T0〉)(T0(t+τ)-〈T0〉)〉 

with corresponding spectral density ΦТ0Т0(ω) = -∞∫
∞
BT0T0(τ) exp(-iωτ)dτ, then the spectral densities of 

the physical temperature and radiobrightness can be expressed as: 
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2
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The inverse Fourier transform for real processes of the formulas (7) and (8) determines the autocovariance 

functions for the temperature (at an arbitrary depth level z) BTT(τ.z) = 〈(T(t,z)-〈T〉)(T(t+τ,z)-〈T〉)〉 and 

for the radiobrightness (at a given wavelength  λ ) BTBTB(τ,λ) = 〈(TB(t)-〈TB〉)(TB(t+τ)-〈TB〉)〉: 
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 Using autocovariance functions (9-10), general expressions obtained in [3] allow the determination 

of three basic covariance functions: (i) cross-level (for depth levels z=z1 z=z2) temperature covariance 

function  BT2T1(z2,z1,τ)  =  〈(T(t,z2)-〈T(z2)〉)(T(t+τ,z1)-〈T(z1)〉)〉, (ii) the radiobrightness covariance 

function BTB1TB2(λ1,λ2,τ)= 〈(TB(t,λ1)-〈TB(λ1)〉)(TB(t+τ,λ2)-〈TB(λ2)〉)〉, and (iii) the cross-covariance 

function BTBT(λ,z,τ) = 〈(TB(t,λ)-〈TB(λ)〉)(T(t+τ,z)-〈T(z)〉)〉. Using these functions, it is possible to 

express all of the statistical parameters of the thermal and radio emission functions of the homogeneous 

medium. The property Byx(τ) = Bxy(-τ) also should be taken into account. For the mean values one has  

〈T(z)〉 = 〈T0,〉                 〈TB〉 = 〈T0〉. 

 In [3] the following expression for temperature covariance function was obtained: 
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Substituting (9) in (11), changing the order of integration, and performing the internal integral over τ′ ,  

obtain : 
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 The expression for the radiobrightness covariance function can similarly be written according to [3] 

as: 
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Substituting (10) in (13), changing the order of integration (as was made above), and performing the 

internal integral over τ′  ,we have: 

 

BTB1TB2(λ1,λ2,τ)=0∫
∞

 
1

1 2
2

1 1 2
2

1 1

1 2 1 2
1 2

2
1 2 2 1

1 1
2

2 2
2

0 0π

ωτ ω
γ γ

ω
γ γ

ωτ ω
γ γ

ω
γ

ω
γ

ω
γ

ω
γ

ω ω
cos ( ) [ ( ) ) ] sin( ) ( )

(
( )

)(
( )

)
( )

+ + + + -

+ + + +

a a a

a a a a

dT TΦ   (14) 

 
 From the expression for the temperature-radiobrightness cross-covariance function [3] we have : 
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Finally, substituting the autocovariance function (10) and making the same transformations as above, we 

obtain 

                                                                                                                                                  (16) 
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 The above expressions determine the basic statistical parameters of physical temperature radio 

emission of the half-space in the form of one-dimensional integrals instead of two-dimensional and three-

dimensional integrals in common expressions in [3].  

 Specifically,  values for the rms variances of temperature at level z and radiobrightness at 

wavelength λ are determined from  (12)  and  (14),  respectively, as  σT
2 (z) = BT1T2(z,z,0)  and  σT B

2 (λ) = 

=BTB1TB2(λ,λ,0). The autocovariance function of temperature at level z is determined from (12) as 

BTT(z,τ) = BT1T2(z,z,τ),  and the autocovariance function of radiobrightness at wavelength λ - from (14) 

as BTBTB(λ,τ) = BTB1TB2(λ,λ,τ). It is further possible to determine all the correlation functions of 

temperature and radiobrightness from (12), (14), (16) as R
B
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 One can see that any of the above covariance functions can be expressed via time scale parameters 

as introduced in [2]. Specifically, the time of skin-depth heating is Γ = 1/(γa)2 where the skin-depth is  

d = 1/γ, and the time of heating of the layer with the depth z is Γz = z2/a2. In addition to these parameters, 

the covariance functions must depend on at least one time parameter of the surface temperature covariance 

function. 

 For an exponential surface temperature covariance function of the form :  

 

                                                  BT0T0(τ)  =  σ2 exp(-τ/τ0),                                                          (17) 

 

where there is a single time parameter τ0 (the correlation time),  the spectrum ΦТ0Т0 is : 
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and the covariance functions (12), (14), (16) can be expressed using only three dimensionless parameters 
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It is possible to see from (19)-(21) that the autocovariance functions (which are also functions of τ0) 

should depend only on two of the above dimensionless parameters, i.e. B zTT ( , , )τ τ 0  = B r rTT z( , )τ , 
B

TBTB
( , , )λ τ τ 0  = B r r

TBTB
( , )τ , and rms variances σT B

2 (λ,τ0) = σT B
2 (r), σT

2 (z,τ0) = σT
2 (rz) depend only on 

one of them. Those simple dependences allow the possibility to study these results in detail. 

 For the exponential covariance function (14) some statistical parameters can be expressed in 

explicit form. Particularly, we have : 
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where  Λ = a τ0 . The parameter Λ determines the depth scale of random temperature variations that 

penetrate into the medium. Perhaps the most interesting point is the fact that the correlation maximum is 

achieved with some time shift. This shift occurs because the covariance functions are not symmetric with 

respect to  time shift, in the future and past. As it was mentioned in [3], from the physical point of view, 

the shift occurs because the temperature variations diffuse from the surface into the medium not instantly 

but by means of the process of thermal conductivity. 

 

4. Numerical investigations 

 For the exponential covariance function (17) the numerical simulation has been carried out using the 

expressions (19-21) for all three primary covariance functions. The use of dimensionless parameters 

makes the results valid for a wide range of possible values of real parameters. The basic correlation 

features of physical temperature and radiobrightness are shown in the following figures. 

 In Fig.1,  it is seen that the correlation function R r r r r
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the surface temperature and the temperature at depth level  z  has a dependence on the dimensionless 

parameters rz and rτ , representing the depth and time shift, respectively. One can see that this function, 

which is symmetric relative to the point rτ = 0 (i.e. τ = 0) on the surface, gradually looses its symmetry as 

the depth increases, and that its maximum, gradually decreasing, shifts into the future. 

 In Fig.2, the correlation function R r r r
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at depth level z2 and the temperature at z1 are shown for a fixed value rz1 = 2 (i.e., Γz1 = 4τ0, representing 

the case Γz1 >> τ0) and as a function of rz2 and rτ. This function is symmetric relative to the time shift at 

level rz2 = rz1, but is more broad than (17). By shifting z2 to the surface the correlation maximum shifts, 

decreasing into the past, and, visa versa, by moving away from the surface the maximum shifts in the 

future. 
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 The cross-correlation function R r r r
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fixed value r = 1 (i.e.,  Γ = τ0) and the temperature at level z is shown in Fig.3. This function achieves its 

maximum at the depth level z, at which the dimensionless parameter rz is close to value r . By shifting z 

from this level to the surface, the correlation maximum shifts in the past, and by moving z away from the 

surface, it shifts in the future. 

 In fig.4, the correlation function of radiobrightness R r r r
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shown. At the wavelength  λ1 the dimensionless parameter (r1 = 1, i.e. Γ1 = τ0) is fixed, and one can see 

the dependence of the correlation function on the parameter r2 (for the second wavelength λ2) and on time 

parameter rτ. The correlation function achieves its maximum at r2 = r1, and very slowly diminishes, 

gradually shifting in the future with the increasing of r2 , or to the past for r2 < r1. 

 

5. Conclusion 

 Using the spectral approach, the development of the correlation theory of physical temperature and 

thermal emission for a homogeneous half-space as published in [3] was completed. All of the second-

order statistical parameters of the temperature and radio emission were expressed as one-dimensional 

integrals of the surface temperature spectrum using kernels which depend on the medium parameters of 

absorption and thermal conductivity. For the exponential surface temperature covariance function some 

results were obtained in explicit closed-form and numerical simulations were carried out. 

 The results of the investigation should be applicable to real media (atmosphere, soils, oceans), since 

the case of a homogeneous medium is common. It might be possible to investigate an inhomogeneous case 

on the basis of a numerical analysis in the framework of the general approach described in [3]. 

 This work was supported by Russian Foundation for Basic Research, grant No. 96-02-16514. 
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Figure captures 

 

Fig.1. The temperature correlation function RT0T between temperature and its surface value with 

dependence on the dimensionless parameters of depth rz and time  rτ. 

Fif.2. The temperature correlation function RT1T2 between the temperature at fixed depth (rz1 = 2) and the 

temperature at another level (determined by parameter rz2) with dependence on  rz2 and  rτ. 

Fig.3. The cross-correlation function RTBT between the radiobrightness with the parameter r = 1 and the 

temperature at the depth level z, as determined by the parameter rz, with dependence on  rz and  rτ. 

Fig.4. The radiobrightness correlation function RTB1TB2 between the radiobrightness at two different 

wavelengths, one of which is fixed (r1 = 1) with dependence on  r2 and  rτ. 

 


