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 Absrtact-On the basis of results of simultaneous solution of thermal emission 

transfer and thermal conductivity equations the stochastic theory of temperature 

distribution and thermal radioemission of medium (half-space) has been developed. 

Expressions for covariance functions of temperature profile and brightness 

temperature as functions of statistical parameters of half-space surface temperature 

which was considered as a random function of time have been obtained. 

 

I. Introduction 

 In previous works [1-2] the theory of radioemission in medium (half-space) with temperature 

distribution which depends on boundary conditions (surface temperature or heat flux) dynamics has been 

developed. On the base of simultaneous solution of emission transfer and thermal conductivity equations it 

appeared possible to obtain expressions for brightness temperature of radioemission as integrals of 

boundary conditions evolution [1], and next, to make inversion of these expressions and to obtain formulas 

for boundary conditions and temperature distribution (profile) of the medium as integrals of brightness 

temperature evolution [2]. Since, it appeared possible to obtain a correct solution of the problem of one-

wavelength temperature profile retrieval. These results have been applied for radiometer investigations of 

diurnal heat dynamics in soil (by brightness temperature measurements at wavelengths 0.8 and 3 cm), and 

also for investigations of atmosphere boundary layer (by brightness temperatures at wavelength 0.5 cm in 

the oxygen line center). 

 There are other methods for temperature profile retrieval by spectrum or by angle dependence of 

brightness temperatures measured at the same time. But to use these methods it is necessary to solve 

incorrect integral Fredholm equations of the 1-st kind. It is impossible without using additional a priori 

information about unknown solution. This information can be the information about generous function 

properties such as smoothness, differentiability, or belonging to one of compact sets (Tikhonov's methods) 

[1,3]. It can be also a statistical information. In this case covariance functions and other statistical 

parameters of radioemission and temperature profile are in use. These functions and parameters are 

determined from radiosondes statistics of meteorological network [4-6]. For the cases of atmosphere 
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boundary layer or subsurface soil sounding it is difficult (or, more often, impossible) to take statistics, and 

in these cases Tikhonov's methods have been applied [1,3]. But the results of simultaneous solution of 

emission transfer and thermal conductivity equations [1-2] can be used not only as a new retrieval method, 

but also to develop the stochastic theory of the medium, if one considers surface temperature as a random 

function of time. This theory gives necessary covariance functions and statistical parameters. 

 

II. Problem Formulation 

 Let us consider the homogeneous half-space  z ≤ 0  with the constant parameters: thermal 

diffusivity coefficient a2 and absorption (of thermal radioemission) coefficient γ. If we have 

boundary condition for temperature T(0,t) =T0(t), then the temperature distribution inside the half-

space can be determined from thermal conductivity equation as a function of depth and time as follows: 
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 The brightness temperature of upward thermal radioemission at wavelength λ is determined 

from emission transfer equation: 

 

                       TB(λ,t) =
−∞∫

0
T(z,t) γ(λ) e 

γ(λ)z 
 dz  .                                 

(2) 

 

(for briefer formulation it is supposed that the reflection coefficient is zero). 

 The simultaneous solution of (2) and (3) gives the expression for brightness temperature as 

functional of surface temperature [2]: 
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 For the case of inhomogeneous medium the correspondent expression also have been 

obtained in [2]: 

 

                                             TB(t) =
−∞∫

t
T0(τ) ∂

∂ t
 T B

1 (t-τ)dτ  ,                                       (4) 

 
where T B

1 (t-τ) - brightness temperature response by unity change of surface temperature: 
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 The solution of (3) as Volterra's equation of the 1-st kind with the variable upper limit 

obtained in [2] can be expressed as 

 

                        T0(t) = TB(t) + 1
γa
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 The substitution (5)  in  (1)  gives the solution of the problem of one-wavelength 

radiothermometry for homogeneous half-space[2]: 

 

                                                                                                                                                   (6) 
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Performing the integration of the second term in (6) by parts it is possible to obtain the expression 

which permits the determination of the temperature profile by brightness temperature evolution 

[2]: 
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 The above expression is valid for all values of z with the exception of z = 0 where it is 

impossible to perform the integration by parts in (6). This important property has not been 

discovered in the previous works. 

 This theory gives also full information about heat flux dynamics J(z,t) in the medium. The 

correspondent expression can be obtained from (6): 
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In this expression k is the thermal conductivity coefficient. 

 On the base of this theory it is possible to obtain one more useful result - the formula which 

expresses the brightness temperature at one wavelength as a functional of evolution of brightness 

temperature at another wavelength. To take this formula it is necessary to substitute the 

temperature profile (6) expressed as function of evolution of TB1 at λ1 in (3) for TB2 at λ2. 

Changing the integration sequence and taking internal integral by z one has the final expression: 
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where γ1, γ2 - absorption coefficients at wavelengths λ1 and λ2 respectively. It should be 

mentioned that it is impossible to use for this purpose the expression (7) instead of (6) because the 

formula (7) is invalid in one point z = 0, (integrand expression in (7) has the singularity in this 

point). 

 From (8) at γ1 = γ2 one has  the obvious result TB2 = TB1. In the case, when γ2 << γ1 the first 

term in (8) disappeares, and one has the formula similar to (3) where instead of surface 
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temperature appears the brightness temperature TB1. It is an evident result because for skin-depth  

d  = 1/γ  one has the relation  d1 << d2 . It is well known that the main contribution in the value of 

brightness temperatute in (2) gives the temperature profile in the layer from surface level to level  |

z| = d , hence the brightness temperature TB1 in this case plays a role of surface temperature. It is 

possible to use the expression (8) also for determination of medium parameters by simultaneous 

measurements of thermal radioemission at two or more wavelengths. 

 

 III. Stochastic theory of half-space 

 Now, let us consider the boundary condition for the temperature as a random stationary 

function with the middle value 〈T0〉, mean square deviation σT0 and autocovariance function BT0T0(

τ) = 〈(T0(t)-〈T0〉)(T0(t+τ)-〈T0〉)〉 which for evaluations will be used in the form: 

 

                                               BT T T0 0 0

2

0

( ) exp( )τ σ τ
τ

= −                                                       (9) 

 

where  τ0  is the correlation time. The random temperature variations on the surface for cases of 

atmosphere and soil can be related with mesoscale and large scale weather processes. For water 

and wet soils surface temperature variations can be caused also by evaporation variations related 

with wind speed variations. So, in each case it is necessary to use for evaluations the properly 

choosen value of τ0 . 

 The purpose of the following analysis is determination of covariance functions of 

temperature distribution and brightness temperature using medium parameters and statistical 

parameters of the surface  temperature. It is clear that for mean values   〈T(z)〉  =  = 〈T0〉,  〈TB〉 = 〈

T0〉, because of the unity normalization of correspondent integral expressions. 

 If the surface temperature is a random function then using the fact that these integral 

expressions are linear, it is possible to develop the stochastic theory for the random components of 

temperature distribution and thermal radioemission of the medium on the basis of known approach 

in the theory of stationary random processes for linear systems which leads to Wiener-Li 

expressions. The following results determine the stochastic parameters of temperature distribution 

and thermal radioemission of the medium using known stochastic parameters of the surface 

temperature. These formulas can be easy obtained from above expressions by means of changing 
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the integration and averaging sequence along with variables change τ′  = t-τ . The results are given 

in the form which is valid both for positive and negative half-space. The property of covariance 

functions       Byx(-τ)=Bxy(τ) is also in use. 

 So, from (1) for covariance function between surface temperature and temperature T(z) at 

level z we have 
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where K(τ′ ) is the kernel of the integral in (1). From this we have the expression for mean square 

variance 
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and for autocovariance function of temperature at level z 
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and also for interlevel covariance function between temperature variances T1 at the level z1 and T2 

at the level z2 (in that case T2 in the kernel of the integral in (1) plays a role of surface 

temperature): 
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 The covariance function between surface temperature of the medium and brightness 

temperature of its radioemission can be expressed as  

 

                                                  BT TB0
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where K1 is the integral kernel in (3) or in (4). The formula (14) leads to the expression for mean 

square variance 
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 and for brightness temperature autocovariance function 
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 It is possible to use (16) to obtain the expression for covariance function between 

brightness temperatures ТB1 and ТB2 at two different wavelengths λ1 and λ2 from (8) 
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and also to obtain the formula for covariance function between brightness temperature and 

temperature at the level z from (6) and (7): 

 

 

 BT TB
( )τ = 

0∫
∞

B
z

a
d

T TB B e
z

a( )
( ) /τ τ

π
τ

τ
τ- ¢ ¢

¢
+

-
¢

2

2
2

3 2
4 1

γa0∫
∞ ∂

∂τ
τ τ τ

π τ
τB dT TB B e

z
a

′
− ′ ′

′

−
′( )

( ) /

2

2

1 2
4  =  



8 

 

             =
0∫

∞
B

z
a

z
a

z d
T TB B e

z

a( ) [ ( ) ]
( )

./τ τ
π γ τ

τ
τ

τ- ¢
¢
- - ¢

¢

-
¢

2
1

2
1

2

2

2
2

3 2
4  ,  (|z| > 0) .                  (18) 

 

 Of course, it is easy to obtain similar expressions for the heat flow in the medium. 

 On the base of this theory it is possible, in particular, to carry out a sensitivity study of the 

linkage between the time history and the thermal structure. Since the expressions (6), (7) are 
linear, it is possible to consider BT TB B

 
in (18) as error covariance matrix B T TB Bδ δ  , and for mean 

square error (δT(z))2 of temperature profile determination  one has, using (18), 
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If brightness error is time-independent, i.e. δTB = const , then δT(z) = δTB . 

 

IV. Regression analysis and evaluations for atmosphere and subsoil radiothermometry 

 The expressions obtained are of great interest from the point of view of widely applied 

statistical methods of temperature profile retrieval by thermal radioemission or by surface 

temperature [4-6] because it appears possible now to use these expressions also for the cases of 

atmosphere boundary layer and subsurface soil sounding. The developed theory permits to 

determine necessary stochastic parameters. Moreover, the obtained results make clear the physical 

significance of these parameters. The expressions obtained give the possibility to make predictions 

in the future (τ  >  0), in the past (τ  ≤  0), and simultaneously (τ = 0). 

 It is easy to use the expression (10) for regression estimation of temperature profile at time  t  

by surface temperature measured at time  t-τ : 

 

                                     T z t T
B

T t T
T T
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( , )
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2 0 0
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σ
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Similarly, it is possible to estimate the temperature profile by brightness temperature, using (18): 
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                                     T z t T
B

T t TT T

T
B
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( ( ) )= + − −0 2 0

τ
σ

τ                                       (20) 

or to use more complicated methods of multivariate regression or statistical regularization [4-6]. It 

is clear that all other above mentioned covariance functions can be applied similarly for 

estimations of correspondent values. Thus, using (13), one can estimate the temperature at the 

level  z= z2  by the temperature at  z= z1  and, using (17), estimate the brightness temperature at 

one wavelength by brightness temperature at another wavelength. On the basis of (12) and (16) it 

is possible to make predictions of the temperature at given level and the brightness temperature at 

given wavelength in the future and in the past by their present values.  

  It is known that the mean square error σy/x of regression estimation  y  by  x  depends on 

correlation coefficient  R
B

xy
xy

x y
=

σ σ
  , and can be calculated from presented above expression as 

                                                     σ σy x y xyR/ ( )2 2 21= −   .                                                     (21) 

 From expressions for correlation functions one can see that these functions are not symmetric 

relative to the point  τ=0 ,and, moreover, it is not a point of their maxima, i.e. the prediction in the 

future is not symmetric relative to the prediction in the past. The prediction of the profile by 

simultaneous values of surface temperature or brightness temperature known as "optimal 

extrapolation" is not optimal in reality. One can see from (21) that the optimal estimation is the 

estimation of value to be predicted at time t by value of the predictor at such a time (t - τm) that for 
τm functions Rxy m( )τ  and, hence, Bxy m( )τ  will have their maxima. The condition from which 

the value of τm can be determined is obviously dB
d
( )τ
τ

= 0, and the correspondent equations can be 

easy obtained from expressions for covariance functions. Concretely, for the temperature profile 

prediction, for each value of z there is the correspondent value τm(z), and the optimal extrapolation 

can be achieved not by simultaneous value of surface temperature, but by its value which was at 

time    t - τm(z)   in the past. It is obvious that value of  τm increase with increasing of z, i.e. τm(z) is 

a monotonically increasing function of z. This property of regression estimation is obvious from 

the physical point of view because the surface temperature disturbance can influence the 

temperature of deep layers not at the same time but only by means of heat conductivity, with the 

delay which increases with depth. 
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 It is possible to suppose that in real atmosphere (especially in the boundary layer) in spite of 

the fact that the real conditions are not in full correspondence with assumptions of this theory, the 

temperature correlation maximum must be also in the past.  
 For exponential covariance function (9) some simple results can be obtained. The expression 

(10) yields 
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In particular, 
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0( ) = σ τ

T e
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One can see that there is a correlation depth  Λ = a τ0   which can be considered as one of 

definitions for atmosphere boundary layer (as a typical height scale of layer where there is 

appreciable influence of surface temperature variations on temperature profile variations). In this 

case the equation for the determination of optimal extrapolation time shift τm(z) can be written as 

follows: 
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 From (14) it is possible to obtain 
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After integration of (25) one has: 
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where 1F1 is the singular hypergeometric function, Γ = 1/(γa)2 is time parameter which determines 

the heating of the medium at the skin depth   d=1/γ  (because the evolution of T0(τ) at  τ << t-Γ  

gives the negligible contribution in the value of TB(t) in (3)). The expression (26) yields: 

                                        BT TB0
0( ) =  σ

τ

τT0

2

0

01

Γ

Γ
+

  = σT d0
2 Λ

Λ+
   ,                                     (27) 

where the obvious relation τ0
Γ

Λ=
d

 is used. One can see that the correlation of the brightness 

temperature of the medium with the surface temperature is determined by relation of surface 
temperature correlation time and time of skin-depth heating. At τ0/Γ>> 1  BT TB0

0( ) = σT0

2 ,  and at τ

0/Γ << 1  BT TB0
0( ) =0. This result is absolutely clear. If the medium is able to change its 

temperature at skin-depth during the correlation time of surface temperature, the brightness 

temperature will be completely correlated with the surface temperature. Otherwise, the variations 

of these values will be uncorrelated. 

 Considering the question about the possibility to apply the developed theory to atmosphere 

and soil investigations it is important to take into account the specific conditions of the case to be 

studied. In particular, for atmosphere a2 is turbulent thermal diffusivity coefficient whereas for 

soil it is molecular one. In the case of soil (for homogeneous one especially) it is possible to expect 

that random components of temperature distribution and radioemission, which are superimposed 

on periodic diurnal and seasonal components, can be properly described by this theory. It should 
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be mentioned, however, that if the constitutive properties have the strong temperature dependence 

(for example, near freezing), the problem becomes nonlinear and this theory is invalid.  

 In the case of atmosphere the random component of temperature profile can be formed not 

only by thermal conductivity but also by advection, condensation and evaporation of water, by 

transfer and absorption of infrared emission. The atmosphere is very often an inhomogeneous 

medium (especially for a2) and its parameters can be time-dependent. If the typical time scale of 

this dependence is less than τ0, the theory is not applicable. In the atmosphere boundary layer, 

however, under certain conditions and for measurements in the strong absorption lines, for 

example, in oxygen line at frequency 60 GHz where the absorption coefficient is a constant value, 

this stochastic theory can be applied as well as the initial formulas in [2]. But in any case the 

random component of temperature distribution connected with the thermal diffusivity plays an 

important role in the atmosphere, and it is possible to estimate its relative contribution in various 

cases on the basis of comparison of theoretical and empirical covariance functions. 

 Although the application of the theory to concrete cases is beyond the scope of this paper, for 

better understanding of typical time and height scales in above formulas some estimations of 

parameters for atmosphere and soil are presented. Large scale weather correlation time for surface 

temperature is typically about τ0 ≅  2.6⋅105 s (3 days). It is clear that the value of a2 in the 

atmosphere can be changed during this time, and in these cases the above theory will be invalid for 

large scale weather variations.  

 During the radiometer investigations of temperature dynamics of atmosphere boundary layer 

and soil presented in [2] the media parameters had the following values. For soil: a2 = 1.0⋅10-3 

cm2/s,  d=1/γ ≅  1.0⋅λ , Γ =1/(γa)2 was from 10 minutes at  λ = 0.8  cm to  50 hr at λ = 13 cm, 
correlation depth in (20) Λ = a τ0  ≅  16 cm. One can see that at shorter wavelengths τ0/Γ >> 1 and 

the correlation between surface temperature and brightness temperature must be high. For 

atmosphere at frequency 60 GHz:  a2  =  7.0⋅103 cm2/s,  d=3.0⋅104 sinθ cm (θ - elevation angle), 

the time parameter Γ was from 16 minutes for measurements at elevation angle 5o to 35 hr for 

measurements in zenith direction, the correlation height  Λ ≅  430 m. 

 In various natural conditions values of these parameters can range wider. For underground a2 

= 10-3 - 10-2 cm2/s, d = 0.1-15λ ,  Γ can be from 0.1 s for water surface in millimeter wavelengths 

up to years for ice at decimeter wavelengths, correlation depth Λ = 15-60 cm. For atmosphere a2 = 

103 - 106 cm2/s , d=3.0⋅104 sinθ cm (at frequency 60 GHz), parameter Γ can be from 1 min at 
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elevation angle 5o up to 10 days for zenith direction. Typical correlation height scale (boundary 

layer depth from the point of view of the surface influence on temperature profile variations) is Λ 

= 100 m - 3 km and typically 500 - 1000 m. It is in correspondence with conventional values for 

the atmosphere boundary layer depth. 

 

V. Conclusion. 

 New results in the theory of simultaneous solution of emission transfer and thermal 

conductivity equations have been obtained, in particular, the relation between brightness 

temperatures at two different wavelengths and expression for heat flux in half-space as functional 

of its brightness temperature dynamics. 

 On the basis of results of simultaneous solution of emission transfer and thermal conductivity 

equations the stochastic theory of temperature distribution and thermal radioemission of the 

medium (half-space) has been developed. The equations for covariance and autocovariance 

functions for temperature profile and brightness temperatures of thermal radioemission have been 

obtained. These expressions have been applied for estimations of correspondent atmosphere and 

soils parameters. 

 The developed theory gives wide possibilities for radiometer investigation of atmosphere-

underground system. New results can be obtained on the base of numerical calculation of 

statistical parameters and its comparison with the same parameters obtained from measurements 

data and from the results of temperature retrieval on the base of Tikhonov's method (see, for 

example, [1,3]). These investigations will establish the application possibilities and restrictions of 

this theory. 

 This work was supported by Russian Fundamental Research Foundation, grant number    94-

02-03472-a. 
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