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Abstract - Expressions are derived that relate the half-space temperature 
profile and the heat flux with the brightness temperature evolution. 
Remote sensing methods are proposed to measure the temperature and 
heat flux in the atmosphere and subsoil layer by radiometric 
measurements. 

 
I. Introduction 

 Microwave radiometric methods are being increasingly applied for subsurface (see, for 
example, [1]-[7]) and atmosphere [7]-[10] investigations. These studies are of special interest for 
remote monitoring of thermal exchange processes between the atmosphere and the Earth's surface. 

The inverse problem of the temperature profile retrieval in homogeneous half-space z ≤ 0 is 
based on the well-known emission transfer equation (in vertical view direction): 
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where T(z) is the temperature profile, TB is the brightness temperature of the thermal radioemission, 
γ is the absorption coefficient, λ is the wavelength. Equation (1) is an incorrect Fredholm integral 
equation of the 1-st kind and additional a priori information is necessary for its solution. This 
information may be statistical one (interlevel covariance), or it may be the information on the 
smoothness of the exact solution (Tikhonov's methods).  

It is also possible to take into account, that T(z) satisfies the thermal conductivity equation 
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where a2 is the thermal diffusivity coefficient. The known solution of (2) with boundary conditions 
T(0,t) = T0(t) is 
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and with boundary conditions dT(0,t)/dz = -(1/k)J0(t) (J0(t) is the heat flux through surface z = 0 and 
k is the thermal conductivity coefficient) 
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Substituting (3) and (4) into (1) and carrying out the necessary transformations, we have (see [6], 
[7]) 
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 If one has the spectrum TB(λ) at the moment t, (5) and (6) are Fredholm's equations with a 
constant upper limit that may solved relative to the evolution of the surface temperature and the 
heat flux T0(t), J0(t) in the past known as "thermal history." The retrieval of thermal history of the 
soil subsurface layer has been carried out on the base of Tikhonov's regularization method [4]. 
 Let us consider another possible case when TB(t) dependence is observed. In this case (5) 
and (6) are equations with a variable upper limit - linear Volterra's integral equations of the 1-st 
kind relative to T0(t), J0(t). The solutions of (5) and (6) determine the surface temperature and heat 
flux evolution by the time dependence of TB(t) only at one wavelengh. This problem has been 
solved numerically [6], [7] for the case of soil, and using the retrieved dependence T0(t), the 
subsurface dynamics of T(z,t) has been calculated from (3). 

It appears possible, however, to find out the strict solution of this inverse problem. 
 

II. Solution of the Problem 
 

Let us consider (6) in compact form 
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Differentiating both sides of (7) one has 
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From (7) and (8) it is easy to obtain 
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or, denoting πγµ /a= , ))(()( 2
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Equation (10) is the Volterra-type integral equation of the second kind, with the Abel-type 

kernel. It is possible to solve this equation using the kernel iteration method. 
The convolution of both sides of (9) with the kernel of integral in (9) gives 
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From (10) and (11) we have 
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Differentiating (12) we obtain the differential equation 
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It is easy to integrate (13): 
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Integrating (15) by parts, one can obtain the solution of the (6): 
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Next, we can use the known expression 
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Substituting (16) in (17) one can obtain the solution of the (5): 
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Now, substitution (18) into (3) after the necessary transformations gives the solution of the problem 
of temperature profile determination in a simple form: 
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Thus, the inverse problem has a strict solution and it is possible to use the expressions 

obtained for remote sensing in different media. 
 



III. Subsurface Temperature and Heat Flux Monitoring 
 

Subsurface radiothermometry based on the solution of (1) has been carried out in [2], [5], 
and [7] using measurements under a horizontal metal screen so that sky brightness and surface 
emissivity can be ignored. Now, we may consider this problem using (11) and (19) on the basis of 
the same measurements of diurnal dynamics at the wavelengths 0.8 and 3cm [5].  

There are two time parameters in the problem, which can be used to change the lower limit 
in equations to some finite value. First, 
                                                                                                                                      (20) 2)/(1 aγ=Γ
 
determines the time interval of integration in (5) and (6). The evolution of T0 at moments τ<<t-Γ 
gives the negligible contribution in the value of TB at the moment t. The second time parameter 
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determines the time interval of integration in (3) and (19). The evolution of T0, TB at moments 
τ<<t-t* gives the negligible contribution in the value of T(z,t). In the case of sounding at skin-depth 
d=1/γ, Γ=t*. For our measurements a2=1.0⋅10-7 m2/s, Γ=500 s at λ=0.8 cm and Γ = 8300 s (2.3h) at 
λ= 3cm. 

In the Figs.1 and 2 the solutions of (11), (19) are shown for measurements at 0.8 and 3 cm, 
respectively. The predicted temperature profiles at time t = 12h 20m in both cases do not differ by 
less than 0.5K. The difference between 0.8 and 3 cm for the and T0(t) and J0(t) dependencies is 
based on the fact that the temperature prehistory before the starting moment has a stronger 
influence for 3 cm [Γ(0.8) << Γ(3)]. One can see that the temperature profile and heat flux 
dynamics show the specific features of diurnal subsoil thermal evolution, including night cooling 
followed by morning warming, which leads to the inversion in the T(z) distribution and a direction 
change of the heat flux. 

It should be mentioned that there is a possibility of determining one of the values a2, γ from 
(18) using direct measurements of T0(t). 
 
IV. Radiometric  measurements of the temperature, heat flux and turbulent diffusion 

coefficient in the atmosphere boundary layer in the oxygen line center 
 

The thermal dynamics in the atmosphere boundary layer depends mostly on the surface conditions. 
To use the (11) and (19) it is necessary to make a substitution z→ -z⋅sin(θ), where θ is the elevation 
angle of the received radioemission. The values γ and a2 must be unchanged in space and time. At 
frequencies near the oxygen line center at 60 GHz, γ is the known constant. The height scale of 
radioemission absorption d = sin(θ)/γ changes from 0 to about 300 m depending on the elevation 
angle. The value of a2 is rather unstable and usually increases with height. For this reason it is 
better to make measurements at some higher level above surface, where the value of a2 changes 
more slowly. 

The value of γ is known with high accuracy, so we can determine the turbulent temperature 
conductivity coefficient a2 from (18) using direct measurements of the temperature dynamics T0(t) 
at the height level of radiometer. Thus, it is possible to evaluate the parameter Γ, which determines 
the interval of influence of the thermal prehistory before beginning the measurements. 

The measurements data (see measurement description [9]) during the formation of the night 
temperature inversion were used for the analysis on the base of (11) and (19). The inversion had 
appeared at 22h (local time). Before that moment the temperature profile had nearly isothermic 
height distribution. A rapid radiation cooling of the surface leads to cooling of the atmosphere 
starting with the near-surface layer and, hence, to inversion of the temperature profile. 



In the Fig.3 the calculation results of the temperature profile T(z, t=0h45m), surface 
temperature T0(t) and heat flux J0(t) are shown along with the brightness temperature TB(t) at 
elevation angle θ = 5° and directly measured T0(t) . 

The value of the coefficient a2 is equal to 0.7 m2/s, and Γ = 900 s. At elevation angle θ = 5° 
Γ = 7200 s and the use of the method becomes more complicated. 

It should be mentioned, that the lack of advection or water phase transformation in the 
atmosphere is also necessary in the method proposed. 

One can see, however, that in some conditions the proposed method is very useful and there 
are possibilities to investigate the relations between the turbulence and atmosphere thermal 
structure. 

 



 
 

 
 



V. Generalization of the Theory 
 

For a real atmosphere as well as for soils, the model of homogeneous medium may be 
inconsistent. Both absorption and conductivity parameters can be functions of depth and/or time. 
The depth profiles can be continuous or layered. If parameters are functions of temperature, the 
problem becomes nonlinear. In all such cases the theory is more complicated by comparison to the 
homogeneous medium, and the corresponding analysis is obviously beyond the scope of this paper. 
Because of that reason and also because of the fact that too many very different cases of an 
inhomogeneous medium can exist, it is difficult to make some comprehensive evaluation of the 
possible errors when the theory for the homogeneous medium is applied in the case of an 
inhomogeneous medium. But it should be mentioned that it is possible to take some information 
about the medium from measurements data. Thus, in the case of an inhomogeneous medium the 
temperature profile retrievals by brightness temperature evolution at two different wavelengths on 
the basis of (19) would differ from each other. It seems interesting to begin the investigations of 
inhomogeneous media with the important case of two-layered medium. It is possible to obtain 
equations which relate TB with the boundary conditions. 

Let us consider such a medium with the temperature diffusivity coefficient a  in the first 
layer -l < z ≤ 0 and  in the second layer z ≤ −l. Suppose, that the medium has a homogeneous 
distribution of dielectric parameters (when the dielectric constants in the two layers are different it 
is easy to take into account the reflection on layer boundaries ). 
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The boundary conditions T(0,t)=T0(t), T(-l,t)=T1(t) determine the temperature profile 
evolution. Inside the first layer, the temperature evolution can be expressed as 
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The substitution of (22) and T(z,t) in the second layer in (1) gives: 
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On the base of numerical solution of (2) it is possible to solve a number of remote sensing 

problems; for example, for turbulent atmosphere layer or for thermal films of the water surface 
layer (see [2]). It is also possible to investigate some limitations in application of the theory for 
inhomogeneous medium. 

The general approach to the solution of the problem in the case of one-dimensional 
inhomoheneous media can be based on the use of Duamel integral for diffusivity equation: 
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where L is a linear differential operator which can contain the derivatives and functions of z. If one 
knows the solution T1(z,t) of (24) with boundary conditions 
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α and β are constants, 1(t) = 1, t ≥ 0; 1(t) = 0, t < 0, the solution of (24) with boundary conditions 
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can be written as 
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The solution of thermal emission transfer equation in the case of one-dimensional inhomogeneous 
dielectric media can be expressed as 
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The substitution of (27) into (28) gives 
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The expression (29) can be written as: 
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Denoting 
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the final equation can be obtained: 
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One can see, that if we know the response T  of the brightness temperature by the 

boundary condition (25), it is possible to solve (32) like (5) or (6) in the case of homogeneous 
medium. If we have simultaneous measurements of T

)(1 tB

B(t) and b(t), it is possible to solve (32) 

relative to )(1 tT
t B∂
∂ . Then we can use this function as a kernel in (32) to solve this equation relative 

to b(t). In such an approach there is no need to know subsurface dielectric profiles, and only to 
determine the subsurface temperature profile from (27) the thermal conductivity profile should be 



known. It is also possible to determine T1(z,t) and )(1 τ−
∂
∂ tT
t B  on the basis of  numerical 

calculations for given thermal and dielectrical structure of the medium. 
In the case of a homogeneous medium, (32) takes the form of (5) if in the boundary 

conditions of (26) β=0, and (32) can be written as in (6), if α=0. It should be mentioned that in (5) 

)(1 τ−
∂
∂ tT
t B → ∞  for τ → t. It is important to take into account such peculiarities in the analysis. 

 
VI. Conclusions 

 
On the basis of the simultaneous solution of the equations of radiation transfer and thermal 

conductivity, the expressions connecting the temperature profile and heat flux dynamics of half-
space with the brightness temperature of its thermal radio emission have been obtained. The 
methods of radiometry monitoring of the temperature and heat dynamics in a homogeneous surface 
layer and an atmosphere boundary layer have been developed. It has been shown how to determine 
the turbulent diffusion coefficient in the atmosphere boundary layer. The approach developed can 
be used for noninvasive radiometry investigations of the heat exchange processes between the 
atmosphere and the Earth's surface. 

The results can be also applied for radiometry remote sensing of the Moon and other 
planets. 

Further investigations have to be pursued for various cases of inhomogeneous media. 
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Fig.1. Soil radiometry sounding at  = 0.8 cm. (a) solid: 1 – TB(t), 2 - direct measured T0(t),dash – 
T0(t) derived from (18), dotted - heat flux evolution J0(t) from (16). (b) Temperature profile T(z) at 
t= 12h 20m derived from (19). 
 
Fig.2. Same as in Fig.1, except λ = 3 cm. 
 
Fig.3. Boundary layer radiometry sounding at 60 Ghz. (a) Solid: 1 – TB(t) at elevation angle θ=5°, 2 
- direct measured T0(t). Dash – T0(t) derived from (18), dotted - heat flux evolution J0(t) from (16); 
(b) Temperature profiles T(z): 1 - at time t=22h, 2 - derived from (19) at time t = 0h45m. 
 


