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Subsurface Near-Field Microwave Holography
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Abstract—A new method of near-field electromagnetic holog-
raphy of subsurface dielectric targets is developed and studied
in experiments with the multifrequency microwave system. It is
based on the solution of the near-field inverse scattering prob-
lem obtained by data of multifrequency measurements of the
two-dimensional (2-D) scattered field distribution with the source–
receiver system that is located above the surface of a medium with
buried dielectric targets. The solution, obtained initially in the lat-
eral k-space representation, can be used to derive tomograms of
distributed inhomogeneities or to determine the geometric shape
of solid targets with sharp boundaries for further visualization
as holography images with a subwavelength resolution. Such a
holography method is studied in detail, including the formation
of scattered field and signal for various samples in various media,
achievable resolution, and effects of multiple scattering.

Index Terms—Holography, inverse problems, microwave
imaging, nondestructive testing, reconstruction algorithms,
tomography.

I. INTRODUCTION

T HE HOLOGRAPHY, as a method of recording and repro-
duction of the wave reflected from an object, has been

proposed by Gabor [1] and applied originally in electron
microscopy; then, it has been realized in optics using discov-
ered possibilities of lasers [2], [3]. The classical holography,
which has appeared as an analog method of imaging, now
involves numerical methods of analysis. Possibilities of using
the digital signal processing in the whole process chain of syn-
thetically prepared holographic light wavefronts suitable for
observation have been realized in “computer-generated holog-
raphy” [4], [5]. Then, digital holography has been developed
further to deliver three-dimensional (3-D) surface of targets
[6], [7]. There are various techniques that are applied in prac-
tice, depending on the intended purpose. Similar approaches
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have been developed to work out various methods of radio
holography [8] that has been further applied in radio imag-
ing, radar target identification, remote sensing, and antenna
metrology.

Recently, results related to possible applications of radio
holography for sounding of subsurface objects and for defec-
toscopy have been published [9]. Unlike this work, where
visualization possibilities of strongly scattering metal targets
have been considered, in this paper, we propose here to retrieve
the shape of weakly scattering low-contrast dielectric objects.
For that, we develop further a method of multifrequency near-
field scanning tomography that was proposed and realized in the
microwave tomography (visualization of retrieved 3-D distribu-
tion of complex permittivity) in [10] and [11] and holography
(visualization of the numerical target shape) of subsurface
dielectric inhomogeneities [12].

Tomography problems always include the statement of cor-
responding 3-D inverse problems that is typically based on the
solution of 3-D integral equations of the first kind. It leads
to strong limitations of the grid size used in calculations and,
hence, to limitations of the achievable resolution. In some of
early proposed methods of subsurface tomography (radiometry,
impedance, low-frequency sounding of earth crust [10], total-
internal-reflection tomography [13], [14]), problems have been
reduced to one-dimensional (1-D) integral equations by 2-D
Fourier transform over transversal coordinates.

We developed this approach for the scanning near-field
tomography of inhomogeneities in arbitrary multilayer media
using the proposed method of data acquisition [11]. It involves
in analysis 2-D lateral distribution of the scattered field mea-
sured by scanning at the unchanging source–receiver relative
position in dependence on a third parameter that provides the
depth sensitivity (such as signal frequency, sensor elevation,
or its size). This scheme enables one to make 2-D Fourier
transform of the integral equation in the Born approximation
and reduce this problem to the multiple solution of 1-D inte-
gral equation; also, an iterative algorithm has been proposed to
obtain some corrections beyond this approximation. Necessary
Green functions have been obtained explicitly in [11] using
the plane wave decomposition of fields. A multifrequency and
a multilevel scheme of measurements have been suggested
and, to retrieve 3-D complex-valued permittivity distributions
from the solution of Fredholm integral equations of the first
kind, algorithms based on the generalized discrepancy princi-
ple in the complex Hilbert space W1

2 have been worked out
and studied in the numerical simulation in applications to mul-
tifrequency microwave tomography and to multilevel perfect
lens tomography. It was shown [11] that there is the possi-
bility to realize a subwavelength resolution in tomography of
subsurface targets in the near-field zone using the property
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of small-aperture antennas to generate and receive evanescent
waves. This approach is the only way when it is impossi-
ble to use higher frequencies (or short pulses)—technically, or
because of a high extinction in media.

Such a multifrequency near-field scanning tomography has
been realized experimentally with the microwave system [12],
where we hit a problem that consisted of a high noise level
related to the scattering by surface inhomogeneities (so high
that it was difficult to discern the signal scattered from subsur-
face targets placed under a visually smooth surface at separated
frequencies). This problem has been surmounted using the
transformation of the multifrequency inverse scattering prob-
lem to that in the time domain for a synthesized pseudopulse,
and good results of such a tomography have been demonstrated.
Also, for targets with a homogeneous inner structure, a method
to obtain holography images of their shape has been proposed,
and first results have been obtained.

Here, we develop and study this method in its applica-
tion to various subsurface targets in various media based on
experiments with the same setup as in [12]. Calculated field
distributions and kernels of integral equations are compared
to those obtained from experiments; the holography method
is generalized for nonsimply connected targets to determine
also the shape of intrusions or hollows. The effect of the sec-
ondary scattering on results obtained in Born approximation is
demonstrated and discussed.

II. INVERSE SCATTERING PROBLEM. SUBSURFACE

TOMOGRAPHY AND HOLOGRAPHY

Let us consider a scattering region with the complex permit-
tivity ε(r) = ε0 + ε1(r) that is embedded in a half-space z ≤ 0
with ε = ε0 (see Fig. 1).

The total field at the frequency ω is a sum of prob-
ing and scattered field components E(x, y, ω) = E0(x, y, ω) +
E1(x, y, ω). For the scheme of measurements with the fixed
source–receiver vector δr, when the structure of the probing
field is invariable relative to the receiver position, it is possible
to express the k-space spectrum (2-D inverse Fourier transform
over x and y) of the scattered field in frameworks of the Born
approximation

E1i(ω, kx, ky, z, δr)

= −4π3iω

∫
z′

ε1(kx, ky, z
′)

⎡
⎣

∞∫
−∞

∞∫
−∞

e−iκxδx−iκyδy

×
∫
z′′

[ji(ω, κx, κy, z
′′ − z − δz)G12

ij (ω, κx, κy, z
′′, z′)

⎤
⎦

×G21
ji (ω, κx + kx, κy + ky, z

′, z)dκxdκydz
′′dz′ (1)

where Glk
ji are k-space components of Green tensors; ji is the

k-space source current distribution (for brevity, we use same
notations for k-space representations). As it is possible to see
from (1), this equation can be used to solve the inverse scat-
tering problem in various statements. If we consider (1) as a

Fig. 1. Scheme of scanning measurements and experimental setup.

Fredholm integral equation of the first kind, it is possible to
use the frequency dependence of the kernel (multifrequency
method) or the dependence of the kernel on the height of the
point where the scattered field is measured (multilevel method).
Without doubt, the multifrequency method is most simple in
applications, and this method is studied in further analysis.

A. Tomography

Variations in complex amplitudes of the received signal s are
expressed by convolution of the instrument function F of the
receiver and the scattered field E1

s(rr) =

∫
E1(r

′)F(xr − x′, yr − y′, zr, z′)dx′dy′dz′ (2)

where rr is the vector determining the receiver position. It leads
to the convolution-type equation for our problem

s(rr, ω) =

∫
ε1(r

′)K(xr − x′, yr − y′, zr, z′, ω)dx′dy′dz′.

(3)

From (1) to (3), the transversal spectrum of signal variations
measured at fixed zr is obtained as

s(kx, ky, ω) =

∫
z′

ε1(kx, ky, z
′)K(kx, ky, z

′, ω)dz (4)

K(kx, ky, z
′, ω) = −4π3iω

∫
z

{
Fi(kx, ky, z, ω)

×
∞∫

−∞

∞∫
−∞

e−iκxδx−iκyδy

∫
z′′

[ji(κx, κy, z
′′ − z − δz, ω)

× G12
ij (κx, κy, z

′′, z′′, ω)]

× G21
ji (κx + kx, κy + ky, z

′, z, ω)dκxdκydz
′′
}
dz.

This equation has been used in our algorithm of microwave
subsurface tomography that was developed and studied in
numerical simulation [11]; however, in our first attempts of
its application, it appeared difficult to discern sounded sub-
surface objects on the measured image of s(x, y, ω) against
the noise produced by the surface scattering. Nevertheless, we
have found that it is possible to obtain much better images of
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subsurface targets, using the transformation of multifrequency
data in the frequency band Δω to the synthesized pseudopulse

s(xr, yr, t) =

∫
Δω

s(xr, yr, ω) exp(iωt)dω

=

∫
ε1(r

′)K(xr − x′, yr − y′, zr, z′, t)dx′dy′dz′

(5)

that can be represented in dependence on the effective depth
parameter zs as s(xr, yr, zs) = s(xr, yr, t = −2zsRe

√
ε0/c)

(taking into account the light velocity in a medium and the
signal path to and from a scattering element)

s(xr, yr, zs)=

∫
ε1(r

′)K(xr−x′, yr−y′, zr, z′, zs)dx′dy′dz′.

(6)

Subsurface inhomogeneities were clearly seen in visual-
ized 2-D images of |s(xr, yr, zs)|. The strong maximum of
|s(zs)|observed in every point of the scanning region (xr, yr)
marks the value of zs that corresponds to the surface scattering
responsible for the bad quality of data at separate frequencies.
The success of this analysis was our motivation to make the
same transformation in (4)

s(kx, ky, t) =

∫
Δω

s(kx, ky, ω) exp(iωt)dω (7)

where s(kx, ky, zs) = s(kx, ky, t = −2zsRe
√
ε0/c). It leads

to the new equation that relates the complex permittivity spec-
trum to the complex-valued synthesized pseudopulse of the
signal lateral spectrum

s(kx, ky, zs) =

∫
z′

ε1(kx, ky, z
′)K(kx, ky, z

′, zs)dz′

K(kx, ky, z
′, zs) =

∫ ∞

0

K(kx, ky, z
′, ω)

exp(−iω2zsRe
√
ε0/c)dω.

(8)

To simplify notation in (8) and below, we use the same
symbols for values and their Fourier transforms, so they are
determined by their arguments.

The solution of the Fredholm integral equation (8) is
obtained with the algorithm based on the generalized dis-
crepancy principle in the complex Hilbert space W1

2 [11].
In frameworks of this method, to obtain the solution of
(8), the generalized discrepancy should be minimized up to
the level of the error parameter δs2(kx, ky) = sup ‖δs‖2L2

=

sup
∫
Δzs

|Kε1 − s(kx, ky, zs)|2dzs in k-space. In practice, it is
difficult to obtain the proper estimation of this noise parameter
for each pair (kx, ky), and it is suitable to use the univer-
sal averaged (over the k-range of analysis) value < δs2 > =

1
ΔkxΔky

∫
Δzs

∫∫
δs2(kx, ky, zs)dkxdkydzs calculated by pseu-

dopulse variations δs(x, y, zs) obtained by the data of measure-
ments in the same range of analysis, but without buried targets.
Taking into account the corresponding expression for the signal
norm < s2 > =

∫
Δzs

∫∫
s2(kx, ky, zs)dkxdkydz, it is possi-

ble to introduce the signal-to-noise ratio (SNR) as SNR =√
< s2 > / < δ2S >.

Fig. 2. Left: a target shape in z-section as two functions x1(y, z), x2(y, z).
Right: shape of the target with a hole that is defined by functions x3(y, z),
x4(y, z).

It should be mentioned that for such equations, typically, the
dependence of retrieval accuracy on this parameter is not sharp.

From the solution of (8) in k-space, the desired 3-D struc-
ture of complex permittivity is obtained by 2-D inverse Fourier
transform

ε1(x, y, z) =

∫∫
ε1(kx, ky, z) exp(ikxx+ ikyy)dkxdky.

(9)

B. Holography

In practice, subsurface targets mostly have a homogeneous
internal structure. If it is known a priori that the permittivity of
a target ε1 = ε01 = const, then the holography problem, i.e., the
problem of target shape retrieval, can be solved using k-space
solution ε1(κx, κy, z) of (8). For that, we express the shape of
the target as two functions x1(y, z) and x2(y, z) shown in Fig. 2
(left) in a z-section.

Assuming that x1(y, z), x2(y, z) are single-valued functions,
the retrieved k-space permittivity spectrum can be written as the
Fourier transform with finite limits

ε1(kx, ky, z) =
1

4π2

y2∫
y1

x2(y)∫
x1(y)

ε01e
−ikxx−ikyydxdy

=
ε01
4π2

y2∫
y1

exp(−ikyy)
1

ikx
(e−ikxx1(y) − e−ikxx2(y))dy.

(10)

Then, making the inverse Fourier transform of (10) over ky ,
we obtain the complex-value transcendent equation

ε1(kx, y, z) =
ε01

2πikx
(e−ikxx1(y,z) − e−ikxx2(y,z)) (11)

that is equivalent to the system of two real-valued equations.
The desired shape of the target expressed by two functions
x1(y, z), x2(y, z) is obtained from this equation using the
solution ε1(κx, κy, z)of (8). It should be mentioned that this
equation is overdetermined: it can be solved at each value of
kx that makes possible to optimize the solution. Depending on
available conditions, the value of ε01 may be known a priori,
or obtained from tomography results (9), or from the solution
of (11) as an expanded system with some extra equations with
some different values of kx.
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In fact, due to the nonlinearity of the problem, the solution
algorithm may be trapped into local minima, however, in our
numerical simulation as well as in processing of experimental
data it did not appear. In solving, we used the method of exhaus-
tive search over the set of possible values of functions x1 and x2

with a step small enough to minimize the quadratic discrepancy
for each pair of their arguments (y, z). Best results are obtained
at values of kx of the target transversal spectrum close to the
value kx = 2π/Lt, where Lt is an estimation of the target’s
transversal size by visualized pseudopulse image. To obtain the
clearest image, this method has been repeatedly applied at vari-
ous values of kx around this value—such as in optical focusing.
It is clear that a similar equation can be written for the shape
expressed by functions y1(x, z), y2(x, z).

It is possible to generalize this holography method for objects
with inclusions of another material with permittivity ε1 = ε021 .
In this case, it is also necessary to obtain the shape of this hole
defined by two functions x3(y, z), x4(y, z) as it is shown in
Fig. 2. Making the same transformations as above, one has the
complex-value transcendent equation

ε1(kx, y, z) =
ε01

2πikx
(e−ikxx1(y,z) − e−ikxx2(y,z))

+
(ε021 − ε01)

2πikx
(e−ikxx3(y,z) − e−ikxx4(y,z)).

(12)

This equation should be solved as a system of two or more
equations with different values of kx. Values of ε01, ε

02
1 can be

determined from the results of tomography analysis.
Here, it should be stressed that it is theoretically impossible

to obtain the exact positions of target boundaries using tomog-
raphy images obtained from (9)—even neglecting retrieval
errors, because it is well known that step-functions cannot be
expressed exactly close to the points of gradient discontinu-
ity even by arbitrary long Fourier series that represent (9) in
numerical calculations. In such points, the Dini test for point-
wise convergence of Fourier series is not satisfied, and the
results are distorted by Gibbs effect. So, if it is known a pri-
ori that we deal with such a target, the problem is to determine
the exact position of its boundaries on smoothed holography
images. The proposed method is just a proper rigorous solution
of this problem.

III. MULTIFREQUENCY TOMOGRAPHY AND HOLOGRAPHY

A. Study of Integral Equations

This theory has been realized in algorithms of multifre-
quency microwave tomography and holography and studied
experimentally. Measurements of signal complex amplitudes
for 801 frequencies in the range 1.6–7.0 GHz obtained by 2-D
lateral scanning are used in analysis. The source–receiver sys-
tem based on the vector network analyzer Agilent E5071B
includes two identical transmitting and receiving planar bow-
tie antennas in bistatic configuration placed in y-direction with
3.8 cm length of arms and 5.4 cm width, placed in y-direction;
the fixed distance between centers of antennas was Δx =

Fig. 3. (a) Amplitude of kernel |K(X = 0, Y = 0, z′, ω = 2πf)| of (6).
(b) Kernel |K(X = 0, Y = 0, z′, zs)| of (8).

7.5 cm. They are scanning together in the rectangle x− y area
above the buried targets.

Current distributions on such antennas are quite sharply
localized at the center of their surface, so they have a very
broad spatial spectrum, where components with kx, ky > 2π/λ
dominate, and, according to (1), they form a broad near-field
spectrum of the signal. It makes possible to realize the subwave-
length resolution of targets in the proposed tomography method
that has been demonstrated in [12].

Theoretically, the depth of such subwavelength tomography
is not limited—restrictions are related only to the achievable
sensitivity. But in practice, at a fixed sensitivity, because of
the fading of evanescent components with depth, the accu-
racy of tomography decreases with the increase in target depth,
whereas its resolution tends gradually to Rayleigh limitations.
It should also be noted that the accuracy of retrieval depends
on the target depth as well as on its shape, so it can be deter-
mined only on the base of the case study—from numerical or
real experiments.

Taking into account that subsurface inhomogeneities are typ-
ically solid targets with sharp boundaries, here we study the
method of computer holography for such targets with various
permittivities: foam (ε0 = 1), epoxy (ε0 = 3.4 + 0.03 i), con-
crete (ε0 = 6.0 + 0.05 i), and living tissue (pig’s fat) (ε0 =
11.3 + 2.2 i) buried in sand (ε0 = 4.0 + 0.5 i ) or dipped in
engine oil (ε0 = 2.5 + 0.2 i).

To study the formation and spatial resolution of the measured
signal s(xr, yr, ω) at separate frequencies and of its synthesized
pseudopulse s(xr, yr, zs) at various values of effective depth of
scattering zs, it is necessary to study kernels of corresponding
3-D equations (4) and (6). These kernels are calculated using
transformations

K(X,Y,z′,zs)=
∫∫

K(kx, ky, z
′, zs)exp[ikxX+ikyY ]dkxdky

(13)

K(X,Y, z′, ω) =
∫

K(X,Y, z′, tc/2Re
√
ε0) exp(iωt)dt

(14)

where X = xr − x′, Y = yr − y′. Results of their calculation
for targets in sand are shown in Fig. 3.

As it can easily be seen, the near-surface contribution of the
kernel (4) in the signal is dominated (that makes it difficult to
discern the field scattered by targets from the noise introduced
by surface inhomogeneities), whereas the kernel of (6) for the
synthesized pulse has maxima at various depths throughout the
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Fig. 4. Experimental kernel K(X = 0, Y = 0, z′, zs) in (8) for scattering
elements at X = 0, Y = 0 in (a) sand and (b) oil.

Fig. 5. Transversal structure of experimental kernel |K(X,Y, z′, zs − z′)| in
(8). (a) z′ = −1 cm. (b) z′ = −3 cm. (c) z′ = −7 cm.

interval of sounding. Such a kernel provides much better condi-
tions for the equation solving—it is much closer to the perfect
kernel expressed by a line of δ-functions.

Of course, it is interesting to compare the theoretical ker-
nel in (6) with that obtained from experiments. There is a quite
simple way to determine the kernel K in (8) from measure-
ments of weakly scattering thin test samples with the known
shape and permittivity placed at different depths z0 throughout
the sounded area. Corresponding lateral spectra are expressed
as ε1(kx, ky, z

′) = εt(kx, ky)δ(z
′ − z0), and the kernel is

obtained as K1(kx, ky, z0, zs) = s(kx, ky, z0, zs)/εt(kx, ky).
Then, the kernel of integral equation (6) is obtained from (13).

In Fig. 4, it is possible to see such experimental kernels
K(X = 0, Y = 0, z′, zs) in (6) obtained from measurements
with thin test samples (Δz = 0.5 cm) in sand and oil.

One can see a good correspondence between the theoreti-
cal [Fig. 3(b)] and experimental [Fig. 4(a)] results for targets
in sand. Also, it is possible to see that measurements in oil
[Fig. 4(b)] have a better sensitivity to deep targets because it
is a less absorbing medium than sand [Fig. 4(a)].

In Fig. 5, the transversal structure of experimental kernel
K(X,Y, z′, zs) in (6) obtained from measurements in sand is
demonstrated assuming that the effective depth zsof scattering
is equal to the depth z′of a point scattering element at three val-
ues of z′. It can be considered as a point spread function. It can
be seen in Fig. 5 that, like in Fig. 4, the signal scattering has
its maximum close to z′ = −3 cm. The width of this function
grows with depth; however, it remains sharp enough near its
center that provides a good transversal resolution of images.

B. Results for Low-Contrast Targets in Sand

To study the depth resolution of proposed methods of
tomography and holography, results for parallelepiped
foam samples with sizes 4× 4× 1 cm3 (see insertion in
Fig. 6) have been obtained. Their lateral sizes correspond

Fig. 6. (a) Signal frequency spectrum of targets at depths
zt = −1,−2, . . . ,−10 cm measured in the center point (x = 10 cm, y =
10 cm) above targets in sand. (b) Corresponding pseudopulse amplitude
versus effective depth of target zs.

Fig. 7. Top: images of signal amplitude |s(x, y, ω = 2πf)| for target at
zt = −3 cm at five frequencies in sand. Lower row: pseudopulse ampli-
tude |s(x, y, zs)| images for target at zt = −3 cm at five values of effective
depths zs.

to the shortest free-space wavelength λmin = 4 cm in
analysis. In Fig. 6(a), the frequency dependence of
the signal amplitude measured above the target center
position |s(x = 10 cm, y = 10 cm, 2πf)| for targets at
depths zt = −1,−2, . . . ,−10 cm is demonstrated. The
corresponding dependence of the pseudopulse amplitude
|s(x = 10 cm, y = 10 cm, zs)|on the effective depth zs is
shown in Fig. 6(b).

As it is seen in Fig. 6(a), the frequency band of analysis cov-
ers the main part of the scattering spectrum. For centimeter-size
inhomogeneities, the signal falls drastically with decrease in
scattering at lower frequencies; at higher frequencies, the sig-
nal falls because of the increase in absorption. Unfortunately,
it is impossible to discern targets in multifrequency data. But
in pseudopulse data in Fig. 6(b), targets are clearly seen. That
demonstrates the possibility to realize a good depth resolution,
so that one can estimate their depth position. It is very impor-
tant to obtain a good solution of inverse problem (8). In the
near-surface region, one can see the strong maximum in the
pseudopulse amplitude related to the surface-antenna multiple
scattering.

In Fig. 7, the comparison of signal amplitude images at
separate frequencies (f = 1.7, 3.025, 4.35, 5.675, 7 GHz) with
images of pseudopulse amplitude at various values of the
effective depth (zs = −2.5;−3;−3.5;−4;−4.5 cm) is given.
Again, one can see that it is very difficult to discern targets in
signal images measured at separate frequencies in the band of
analysis (upper row in Fig. 7).
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Fig. 8. (a) Results of subsurface tomography of targets at depths
zt = −1, −3, and − 7 cm (vertical section at y = 10 cm) in sand.
(b) and (c) Holography images of these targets expressed by functions
x1(y, z), x2(y, z). Arrow marks the minimal wavelength in analysis.

Fig. 9. Distribution of total field |E(x, z)| in vertical section y = 10 cm at
frequencies: (a) f = 1.6 GHz; (b) 3 GHz; (c) 5 GHz; and (d) 7 GHz.

In pseudopulse data (lower row), the noise related to surface-
target scattering is much suppressed, and targets are clearly seen
in some range of effective depth zs. So, one can discern subsur-
face objects in pseudopulse images and estimate their maximal
transversal sizes. It is also worth mentioning that the clearest
image is seen at zs ≈ zt, so one can easily estimate the depth
localization of target.

In Fig. 8, results of tomography and holography for this
target at three different depths zt = −1,−3, and − 7 cm are
shown. Tomography results are obtained from the solution of
(8); holography images—from (11), assuming signal-to-noise
level SNS = 7, 20, and 5, respectively. Pseudopulse data in
the region −0.5 ≤ zs ≤ −10 cm have been used in analy-
sis. Results demonstrate a subwavelength resolution of images
and good accuracy (not less than 20%) in determination of
dielectric parameters, shape, and position of buried targets. At
deeper depths, outside the near zone for the longest wavelength,
images of targets gradually become fuzzy.

To study the applicability of Born approximation, field dis-
tributions have been calculated for the foam sample at the depth
zt = −1 cm at four frequencies (see Fig. 9).

Distributions of the probing field in Fig. 9 are practically
unperturbed by the foam sample, so (8) is suitable for analy-
sis. At lower frequencies, the target appears inside the near-field
zone, whereas at higher frequencies, it is in the range where the
wave (propagating) components of the probing field dominate.

In Fig. 10, results of holography analysis for epoxy sphere
(billiard ball) are presented as an example of the target with an
extremely low dielectric sample-medium contrast (ε01 ≈ 0.5).

The SNR for a such low-contrast target is less than that for
targets shown in Figs. 7 and 8 (the value SNS = 4 was assumed
in analysis). However, the Born approximation is fulfilled much
better in this case. As a result, holography images of the target
are retrieved with a good quality.

C. Results for Targets in Oil

Measurements in a liquid medium have obvious advantages:
perfect plane surface, absence of volume inhomogeneities,

Fig. 10. Upper row: images of signal amplitude |s(x, y, zs)| for epoxy sample
at zt = −5 cm at zs = −4,−5,−6,−10 cm in sand. Lower row: holography
images of target expressed by functions x1(y, z), x2(y, z). Insertion: target.

Fig. 11. Images of pseudopulse amplitude |s(x, zs)| at y = 10 cm for con-
crete (upper row) and fat (lower row) targets with sizes 4× 4× 1 cm3 at
target depths zt = −0.5, −2, −4, and − 6 cm in oil. Rectangle insertions
determine target positions. Dashed line marks the bottom level of the tank.

easier positioning of targets, and, as a result, a low level of
related noise and errors, so that value SNR = 30 was assumed
in analysis. In this study, we used targets from concrete as a
material with a relatively small dielectric contrast, and fat as a
material with large real and imaginary parts of permittivity.

At first, to compare results to those obtained in sand, exper-
iments have been carried out for samples with the same sizes
4× 4× 1 cm3. The specific character of scattering from these
targets is seen in dependence |s(x, zs)| of the signal on the
effective depth of scattering zs shown in section along the line
x passed above the centers of targets (Fig. 11).

As it can be seen from images for targets at depths zt =
−0.5;−2 cm, fat images are wider and deeper as compared
to concrete images. We think that it may be explained by
secondary surface-target scattering because of the large fat
permittivity. In contrast to shallow-buried targets, for targets
at depths zt = −4;−6 cm, fat targets look thinner, which we
consider as an effect of larger absorption in the fat material.

In Fig. 12, distributions of total and scattered field for these
samples at depth zt = −1 cm are shown.

As it is possible to see, the field scattered from the fat sample
is somewhat greater than that from the concrete sample that has
lower permittivity. Distortions of the field inside the fat sam-
ple at high frequencies produce secondary scattering. The field
distribution for the concrete sample is very similar to that for
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Fig. 12. Upper two rows: a vertical section of total field |E(x, z)| for concrete
and fat samples at frequencies: (a) f = 1.6 GHz; (b) 3 GHz; (c) 5 GHz; and
(d) 7 GHz in oil. Lower two rows: scattered field |E1(x, z)| for these samples.

Fig. 13. Results of subsurface holography of targets at depth zt = −4 cm in
oil expressed by functions x2(y, z). (a) Concrete target. (b) Fat target.

the foam sample shown in Fig. 9, where the field distribution is
practically unperturbed by the target.

In Fig. 13, holography images for concrete and fat targets
at depth zt = −5 cm are demonstrated for parts of their shape
represented by function x2 (see Fig. 2).

Results demonstrate good shape retrieval for both targets.
Also, small artifacts are seen.

More serious problems have been encountered in experi-
ments with thicker samples and samples with a hollow. In
Fig. 14(a), the dependence of the pseudopulse amplitude above
the target center position |s(x = 10 cm, y = 10 cm, zs)| for
the concrete sample with sizes 4× 4× 3 cm3 at depths zt =
−0.5,−1, . . . ,−10 cm is shown; in Fig. 14(b), one can see
results for the concrete sample with the same sizes but with
the foam intrusion 2× 2× 1 cm3 inside it.

Results demonstrate that thick samples in Fig. 14 are seen
in a wider range of effective scattering depth parameter zs than
thin samples in Fig. 6(b). One can see that the pseudopulse dis-
tribution for the target with intrusion in Fig. 14(b) is sensitive
to this hollow and has two maxima—as opposed to that without
a hollow in Fig. 14(a).

In Fig. 15, dependences of the signal amplitude |s(x, zs)|
on the effective scattering depth parameter zs along the line x
passed above targets’ centers are shown.

Fig. 14. Images of pseudopulse amplitude |s(x = 10 cm, y = 10 cm, zs)| at
target depths zt = −0.5,−1, 1.5, . . . ,−10 cm: (a) for concrete target with
sizes 4× 4× 3 cm3; (b) for concrete target with sizes 4× 4× 3 cm3 with
hollow 2× 2× 1 cm3.

Fig. 15. Upper row: images of pseudopulse amplitude |s(x, zs)| at y = 10 cm
for concrete sample with sizes 4× 4× 1 cm3. Middle row: images for con-
crete sample with sizes 4× 4× 3 cm3. Lower row: images for concrete
target with sizes 4× 4× 3 cm3 with a hollow 2× 2× 1 cm3. Depths of
targets: zt = −0.5,−2,−4, and− 6 cm. Rectangle insertions indicate depth
positions of targets. Dashed line marks the bottom level of the tank.

One can see that the distributions for thick samples differ
considerable from those for the thin sample shown in the upper
row. These images are spread in much wider range over zs as
compared to results for the thin sample.

In Fig. 16, results of holography analysis are demonstrated
for these three targets placed at the depth zt = −5 cm. At that,
for the target with a foam intrusion shown in Fig. 16(c), results
are obtained from solution of (12). In Fig. 16(c), the image
of the outer shape of sample represented by the function x1

is combined with the image of the hollow shape represented
by the function x3(y, z) (introduced in Fig. 2). One can see in
Fig. 16(a) that the image of the thin target is retrieved without
strong distortions. The image of the thick target without hollow
in Fig. 16(b) is seen between two artifacts, but the true image
represents the shape of the sample quite correctly.

Especially impressive results are presented in Fig. 16(c) for
the sample with the foam intrusion that demonstrates the shape
retrieval of both outer and inner boundaries of this nonsimply
connected object. It is also interesting to mention a stochas-
tization of artifacts’ structure for this sample. Probably, these
artifacts can be explained by the interference at the multi-
ple scattering between the receiving antenna and samples with
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Fig. 16. Results of subsurface tomography of targets at depth zt = −5 cm
in oil. (a) Image of concrete target with sizes 4× 4× 1 cm3 represented by
function x1(y, z). (b) Image of concrete target 4× 4× 3 cm3 represented
by function x1(y, z). (c) Image of concrete target 4× 4× 3 cm3 [function
x1(y, z)] with foam intrusion 2× 2× 1 cm3 [function x3(y, z)].

Fig. 17. Scattered field |E1(x, z)| for three samples at: (a) f = 1.6 GHz;
(b) 3 GHz; (c) 5 GHz; and (d) 7 GHz. Upper row: for concrete target 4×
4× 1 cm3; middle row: for concrete target 4× 4× 3 cm3; and lower row:
for concrete target 4× 4× 3 cm3 with hollow 2× 2× 1 cm3.

the contribution of the probing field reflected by the receiv-
ing antenna. The possibility of such sample-antenna scattering
demonstrates the similar effect of the target-bottom scatter-
ing seen in Fig. 15 near the tank bottom level (dashed line).
Nevertheless, in spite of this obstacle, true images in Fig. 16
are observed separately from artifacts and they are free from
strong distortions. We hope that this effect can be suppressed to
some extent by a proper modification of antenna system.

In Fig. 17, distributions of the scattered field for three
concrete above-considered targets are shown at zt = −4 cm.

As it is seen in Fig. 17, the scattered field increases for
larger targets, but it is yet small as compared to the prob-
ing field, so it is reasonable to apply in analysis the integral
equation (8) obtained in Born approximation.

Now, we try to generalize solution algorithms beyond the
Born approximation developing a new approach to nonlinear
inverse scattering problems based on the dual regularization
method in the optimization theory [16].

IV. CONCLUSION

Results of this paper demonstrate that the proposed method
of subsurface holography of dielectric targets in the near zone is
effective enough, providing a subwavelength resolution for tar-
gets of typical natural materials in various media. We hope that

the developed approach can be used in various applications of
electromagnetic or acoustic diagnostics, including biomedical
diagnostics of tumors, nondestructive testing in defectoscopy,
civil engineering, and underground remote sensing.
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