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Absrtact--On the basis of results of simultaneous solution of 
thermal emission transfer and thermal conductivity equations 
the stochastic theory of temperature distribution and thermal 
radioemission of medium (half-space) has been developed. 
Expressions for covariance functions of temperature profile 
and brightness temperature as functions of statistical 
parameters of half-space surface temperature which was 
considered as a random function of time have been obtained. 
 

 INTRODUCTION 
 
 In previous works [1-2] the theory of radioemission in 
medium (half-space) with temperature distribution which 
depends on boundary conditions (surface temperature or heat 
flux) dynamics has been developed. On the base of 
simultaneous solution of emission transfer and thermal 
conductivity equations it appeared possible to obtain 
expressions for brightness temperature of radioemission as 
integrals of boundary conditions evolution [1], and next, to 
make inversion of these expressions and to obtain formulas 
for boundary conditions and temperature distribution 
(profile) of the medium as integrals of brightness temperature 
evolution [2]. These results have been applied for radiometer 
investigations of diurnal temperature and heat dynamics in 
soil (by brightness temperature measurements at wavelengths 
0.8 and 3 cm), and also for investigations of atmosphere 
boundary layer (by brightness temperatures at wavelength 0.5 
cm in the oxygen line center). 
 But the results of simultaneous solution of emission 
transfer and thermal conductivity equations can be used not 
only as a new retrieval method, but also to develop the 
stochastic theory of the medium, if one considers surface 
temperature as a random function of time. 
 

PROBLEM FORMULATION 
 

 Let us consider the homogeneous half-space  z ≤ 0  
with the constant parameters: thermal diffusivity coefficient 
a2 and absorption (of thermal radioemission) coefficient γ. If 
we have boundary condition for temperature T(0,t) =T0(t), 
then the temperature distribution inside the half-space can be 
determined from thermal conductivity equation as a function 
of depth and time. The brightness temperature ТB(λ) of 
upward thermal radioemission at wavelength λ is determined 
from the known solution of emission transfer equation. 

 The simultaneous solution of these equations gives the 
expression for brightness temperature as functional of surface 
temperature [1,2]: 
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 The solution of (1) as Volterra's equation of the  
1-st kind with the variable upper limit obtained in [2] can be 
expressed as 
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 This equation gives the solution of the problem of 
one-wavelength radiothermometry for homogeneous half-
space: 
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Performing the integration of the second term in (3) by parts, 
one has [2] 
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 The above expression is valid for all values of z with 
the exception of z = 0 where it is impossible to perform the 



 

integration by parts in (3). Next, it is easy to obtain the 
formula which expresses the brightness temperature at one 
wavelength as a functional of evolution of brightness 
temperature at another wavelength: 
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where γ1, γ2 - absorption coefficients at wavelengths λ1 and 
λ2 respectively.  
 

STOCHASTIC THEORY OF HALF-SPACE 
 

 If the surface temperature is a random function, then, 
using the fact that all these integral expressions are linear, it 
is possible to develop the stochastic theory for the random 
components of temperature distribution and thermal 
radioemission of the medium on the basis of known approach 
in the theory of stationary random processes for linear 
systems which leads to Wiener-Li expressions. The property 
of covariance functions   
Byx(-τ)=Bxy(τ) is also in use. 
 Now, let us consider the boundary condition for the 
temperature as a random stationary function with the middle 
value 〈T0〉, mean square deviation σT0 and autocovariance        
function  
BT0T0(τ)=〈(T0(t)-〈T0〉)(T0(t+τ)-〈T0〉)〉 which for simple 
evaluations will be used in the form: 
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where  τ0  is the correlation time. 
 It    is   clear  that   for  mean   values     
〈T(z)〉  = 〈T0〉, 〈TB〉 = 〈T0〉 because of the unity normalization 
of correspondent integral expressions. So, from solution of 
thermal conductivity equation we have expressions for 
covariance function between surface temperature and 
temperature T(z) at level z 
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for mean square variance 
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for autocovariance function of temperature at level z 
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and also for interlevel covariance function between 
temperature variances T1 at the level z1 and T2 at the level z2 
: 
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 The covariance function between surface temperature 
of the medium and brightness temperature of its 
radioemission can be expressed as  
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for mean square variance 
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 and for brightness temperature autocovariance function 
                                                                                     (13) 
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 It is also possible to obtain the expression for 
covariance function between brightness temperatures ТB1 and 
ТB2 at two different wavelengths λ1 and λ2 : 
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and to obtain the formula for for covariance function between 
brightness temperature and temperature at the level z : 
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 From expressions for correlation functions one can 
see that these functions are not symmetric relative to the 
point  τ=0 and, moreover, don't achieve its maxima at this 
point, i.e. the prediction for the future is not symmetric 
relative to the prediction for the the past.  
 For exponential covariance function (6) some simple 
results can be obtained. The expression (7) yields 
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In particular, 
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One can see that there is a correlation depth  Λ = a τ0   
which can be considered as one of definitions for boundary 
layer. From (11) it is possible to obtain 
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where   1F1    is the singular  hypergeometric  function,  
Γ = 1/(γa)2 is time parameter which determines the time of 
the heating at the skin depth d=1/γ. The expression (18) 
yields: 
 

         BT TB0
0( ) = σ

τ

τT 0

2

0

01

Γ

Γ
+

.                  (19) 

 
CONCLUSION 

 
 Stochastic theory of half-spase temperature and 
thermal radio emission based on results of simultaneous 
solution of emission transfer and thermal conductivity 
equations has been devalopeded. For the case of exponential 
covariance function of boundary temperature simple and 
physically clear formulas have been obtained.  
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