
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gipe20

Download by: [Orta Dogu Teknik Universitesi] Date: 24 March 2016, At: 10:33

Inverse Problems in Science and Engineering

ISSN: 1741-5977 (Print) 1741-5985 (Online) Journal homepage: http://www.tandfonline.com/loi/gipe20

Dual regularization in non-linear inverse scattering
problems

Konstantin P. Gaikovich, Petr K. Gaikovich, Yelena S. Maksimovitch,
Alexander I. Smirnov & Mikhail I. Sumin

To cite this article: Konstantin P. Gaikovich, Petr K. Gaikovich, Yelena S. Maksimovitch,
Alexander I. Smirnov & Mikhail I. Sumin (2016): Dual regularization in non-linear
inverse scattering problems, Inverse Problems in Science and Engineering, DOI:
10.1080/17415977.2016.1160389

To link to this article:  http://dx.doi.org/10.1080/17415977.2016.1160389

Published online: 23 Mar 2016.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=gipe20
http://www.tandfonline.com/loi/gipe20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17415977.2016.1160389
http://dx.doi.org/10.1080/17415977.2016.1160389
http://www.tandfonline.com/action/authorSubmission?journalCode=gipe20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gipe20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17415977.2016.1160389
http://www.tandfonline.com/doi/mlt/10.1080/17415977.2016.1160389
http://crossmark.crossref.org/dialog/?doi=10.1080/17415977.2016.1160389&domain=pdf&date_stamp=2016-03-23
http://crossmark.crossref.org/dialog/?doi=10.1080/17415977.2016.1160389&domain=pdf&date_stamp=2016-03-23


Inverse Problems in Science and Engineering, 2016
http://dx.doi.org/10.1080/17415977.2016.1160389

© 2016 Informa UK Limited, trading as Taylor & Francis Group
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1.  Introduction

Inverse problems of scattering are widely used in various methods of sounding and tomog-
raphy of media parameters in electromagnetism, acoustics and quantum mechanics. A.N. 
Tikhonov was the first who proposed to use low-frequencies electromagnetic measurements 
in the geomagnetic exploration,[1] followed by L. Cagniard [2] and J. R. Wait [3]. Then, 
various methods to solve this inverse problem (modelling, parameterization, statistical 
regularization, gradient minimization of discrepancy and reduction to integral equation – 
see, for example, in [4–9]) have been proposed.

However, notwithstanding to multiple approaches that has been developed in various 
applications, the non-linear problems of the subsurface electromagnetic diagnostics 
considered here have no universal rigorous solution by now (some one-dimensional 
problems can be reduced to Gelfand–Levitan–Marchenko equation that is solved explic-
itly,[10] but this theory is inapplicable to layered or absorbing media). Algorithms 
that have been used in practice are based mostly on parameterization, but they have 
no convergence and lead to wrong results in cases when the chosen parameterization 
appears unsuitable for the real inhomogeneity. It is well known that such common-sense 
(according Tikhonov’s definition) regularization methods are widely in use in applica-
tions. They are based on approximations of the desired solution by simple functions with 
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2    K. P. Gaikovich et al.

few unknown parameters, or use its decompositions (Fourier, polynomial and other 
series, eigenfunctions, etc.) that lead to a lower dimension of the desired solution and 
corresponding system of equations to be solved. Restrictions of such ‘regularizations’ 
are quite obvious; proper explanations, examples and demonstration can be found, for 
example, in [9].

Tikhonov’s method of generalized discrepancy is effective and has a strong conver-
gence in linear problems.[11] In the solution of some non-linear problems, this method 
also has been applied successfully, for example, in retrieval of the atmosphere ozone 
profile by multifrequency radiometry data.[9] Also, some approaches based on this 
method have been worked out for inverse scattering problems formulated for non-linear 
integral equations that have been solved iteratively, as a sequence of linear Fredholm 
integral equations of the first kind, beginning with the Born approximation.[12–15] 
Good results have been demonstrated in application of this approach to the subsurface 
tomography of low-contrast inhomogeneities.[15] However, in this problem as well as 
in application to problems that are considered in this paper, corresponding algorithms 
demonstrated good results only in cases of low-contrast inhomogeneities or if there is 
a good first guess. Results of the numerical study revealed serious limitations for large 
perturbations, when the Born approximation (first guess of iterative methods) gives 
poor results.[16]

Because of these restrictions, there is a need in more powerful methods of modern 
theory of non-linear ill-posed problems. Notwithstanding the absence of some universal 
methods in this theory, there are approaches that can be successfully applied in practice 
(see in books [17–19] and concrete methods in [20–25]). We apply here a new method of 
dual regularization based on the Lagrange approach in the general optimization theory 
[23–25] that has been firstly proposed as a possible approach to inverse scattering prob-
lems in [16]. In this paper, it is applied to the solution of three one-dimensional inverse 
scattering problems taking into account their specific character: (a) to the problem of the 
low-frequency sounding of the Earth crust; (b) to the problem of the microwave monitoring 
of water content profiles in the process of water diffusion in soil; (c) to the problem of X-ray 
diagnostics of permittivity inhomogeneities in multilayer periodical structures of modern 
X-ray optics. The developed algorithms are studied in numerical simulation, and, in the 
problem (b), they are also applied to experimental data. We consider this study as the first 
step to the solution of more difficult three-dimensional problems of subsurface microwave 
tomography proposed in [13–15].

2.  Method of dual regularization

In most of inverse problems of physical diagnostics,[9] it is convenient to transform the 
initial problem formulated in terms of differential equations to the statement based on the 
solution of integral equations, typically integral equations of the first kind (Fredholm or 
Volterra). There are effective methods, such as Tikhonov’s methods of generalized discrep-
ancy and of regularization on compact sets [11] to solve these problems. Whereas, the reduc-
tion to integral equations is a proper way in linear problems, in non-linear problems, the 
transfer from the differential statement to its ‘integral analogue’ can be a new independent 
and, mostly, more complicated problem. To make such a transition, one has to use various 
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Inverse Problems in Science and Engineering    3

approximations (for, example, Born approximation). At that, errors appear, and the initial 
physical model may be essentially distorted.

However, this transfer is not indispensable, and it can be eliminated from the procedure 
of solving using available methods in the theory of non-linear ill-posed problems. Here, we 
use the method of dual regularization [22–24] based on the theory of optimization and opti-
mal control. It is stable to data errors and suitable for the solution of non-linear problems. 
It develops a similar approach that has been worked out early for the solution of convex 
linear problems [25] based on the classical idea of removing constraints, which underlies the 
Lagrange principle. Two problems are solved simultaneously in dual algorithms: the initial 
problem and the problem which is dual to it. At that, solving the dual problem (that is always 
the problem of convex optimization) leads to constructive approximation of the solution of 
the initial problem. Solving the initial optimization problem in aggregate with solving the 
dual problem forms a saddle point of the Lagrange function of the initial problem.

Probably, the first dual algorithm in the optimization theory has been proposed by Uzawa 
in 1958 [26] (see also in [27]). It was based on the gradient solution of the dual problem, and 
has gained a wide popularity. However, the corresponding convergence theorems [28–30] 
contain two important assumptions: (i) data are free from errors; (ii) the Lagrange func-
tion has the saddle point. Both assumptions are rather restrictive, because data errors are 
inevitable in real applications and the proof of the existence or non-existence of a saddle 
point in such problems is generally a difficult mathematical problem. Generally, the formal 
application of the algorithm may lead and does lead to the instability of the approximate 
solution.[25]

In 1968, works of M. Hestens and M. Powell [31,32] give a stimulus to the further devel-
opment of dual methods for non-linear problems with restrictions. Details of dual methods 
in non-linear optimization problems of mathematical programming in finite-dimensional 
spaces (called the Lagrange multiplier methods) can be found in [27,33–35] and included 
bibliography. The basic idea of these methods is directly connected with the use of so-called 
modified Lagrange function that is the sum of classical Lagrange function and penalty term 
with a positive penalty coefficient that can be formed by a variety of ways. As it is typical 
for non-linear problems, the main feature of dual methods based on the modified Lagrange 
problems is a local convergence, i.e. they converge, if the first approximation for the pair of 
both variables (direct and dual) is close enough to the desired optimal pair. The necessary 
conditions of this convergence are formulated as some a priori suppositions about input 
data in terms of the desired optimal point x*, and, because of this reason, are unverifiable.

The considered inverse problems can be expressed formally as the problem of solving 
the non-linear operator equation

 

where gδ: D → H is a weekly continuous operator with the range of values g(D) that is a 
compact in H, D ⊂ Z is a closed-convex bounded set, Z, H are the Hilbert spaces. Here and 
below, the upper index δ > 0 marks the deviation of perturbed input data from the exact 
values g0(δ = 0). For the problem (1), the estimation of the deviation satisfies to inequality

(1)g𝛿(z) = 0, z ∈ D ⊂ Z,

‖‖g�(z) − g0(z)‖‖ ≤ C� ∀z ∈ D.
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4    K. P. Gaikovich et al.

The reduction of the ill-posed problem (1) to the optimization problem is one of the gen-
eral approaches. Following this approach, instead of the problem (1), let us consider the 
problem of minimization

 

i.e. as it is conventional in the ill-posed theory, let us consider the ill-posed problem to find 
a minimum-norm solution z0 of (1) for δ = 0. Such a solution exists for certain, if the set 
of solutions of (1) isn’t empty; however, the uniqueness of this solution isn’t guaranteed.

In solving the problem (2) that is unstable to errors of input data, we apply here the 
method of dual regularization.[22,23,25,36,37] According to this method, a maximizing 
sequence that includes the Tikhonov’s regularization can be constructed for the dual variable 
in the problem dual to (2). Simultaneously with this process, the minimizing approximate 
solution of the problem (2) in the sense of J. Warga [39] is constructed. Initially, it has been 
proposed to the problem of convex minimization

 

with the continuous strongly convex functional fδ:D  →  R1, convex closed set D, linear 
bounded operator Aδ:Z → H and given element hδ ∈ H. Along with the problem (3), it is 
possible to present its parametric version with the parameter p ∈ Hin the constraint

and with the lower semi-continuous value function β:H → R1 ∪ {+∞}

where Do,�
p ≡ {z ∈ D:‖‖g0(z) − p‖‖ ≤ �}, � ≥ 0.

From the formal viewpoint, the dual regularization method [25,36,37] as applied to the 
convex problem (3) consists in the direct solving the exact (δ = 0) problem, dual to (3), 
with Tikhonov’s regularization:

 

Approximation of the unique solution z0 ∈ D of the initial exact problem (the construction 
of the minimizing approximate solution in the sense of J. Warga [39]) is realized (see in 
details in [20,31,32]) at the condition of the coordinate approach of the regularization 
parameter α and the parameter of input data errors δ

to zero in the regularized dual problem
 

(2)‖z‖2 → min, g𝛿(z) = 0, z ∈ D ⊂ Z,

(3)f 𝛿(z) → min, g𝛿(z) ≡ A𝛿z − h𝛿 = 0, z ∈ D ⊂ Z

f 𝛿(z) → min, g𝛿(z) ≡ A𝛿z − h𝛿 = p, z ∈ D ⊂ Z

�(p) ≡ lim
�→0

≡ ��(p), ��(p) ≡ inf{f 0(z):z ∈ Do,�
p }, ��(p) ≡ +∞ at Do,�

p = �,

(4)V �(�) → sup, � ∈ H , V �(�) ≡ inf
z∈D

L�(z, �),

L�(z, �) ≡ f �(z) +
⟨
�,A�z − h�

⟩

��f �(z) − f 0(z)�� ≤ C� ∀z ∈ D, ��A�z − A0z�� ≤ C�(1 + ‖z‖) ∀z ∈ Z, ��h� − h0�� ≤ C�.

(5)V �(�) − �‖�‖2 → sup, � ∈ H .
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Inverse Problems in Science and Engineering    5

As a result of this procedure that is formally the regularization process of the max-
imizing sequence construction in the exact problem (4), the exact solution z0 of 
(3) is approximated by elements z�[��,�(�)] ≡ argmin{L�(z, ��,�(�)):z ∈ D}, where 
��,�(�) ≡ argmax{V �(�) − �(�)‖�‖2:� ∈ H}.

In the case of subdifferentiability of the convex lower semi-continuous function β in 
the point p = 0 that is equivalent to the solvability of the unperturbed (δ = 0) dual problem 
(4); elements ��,�(�) that are solutions of the regularized dual problem (5) are strongly con-
vergent to the minimum-norm solution of (4). If ∂β(0) = ∅, then ‖‖‖�

�,�(�)‖‖‖ → +∞ at δ → 0. 
Simultaneously, elements z�[��,�(�)] are strongly converging to the unique solution z0of 
unperturbed problem (3) independently of whether the subdifferential ∂β(0) is vacuous or 
not. Thus, in the convex case, the convergence properties of the dual regularization method 
are determined by the subdifferential properties of the function β in the point p = 0 in the 
sense of convex analysis. Simultaneously, this subdifferentiability is indissolubly connected 
with the classical construction of the Lagrange function L�(z, �) (see in detail in [20,31,32]).

In the case of the non-linear problem (3), convergence properties of the non-linear dual 
regularization method [17–19,33] are also completely determined by the subdifferentiability 
of the value function β in the parametric problem

that is determined similar to the convex case [25,36,37] as

However, the subdifferentiability of this lower semi-continuous but, in general, non-convex 
function β:H → R1 ∪ {+∞}, should be understood in the sense of non-convex (non-smooth) 
analysis.[40–42] In this analysis, in the capacity of the concept of non-convex sub differen-
tiability,[22–24,38] concepts of proximal subgradient [40,41] and of subdifferential Frechet 
[45,47] of lower semi-continuous functions in the Hilbert space are in use. Before outlining 
the background related to this concept, we recall the definition of the proximal normal.

Definition 1. (a) Let H be a Hilbert space, S ∈ H be a closed set and s̄ ∈ S. A vector 
ς ∈ H is said to be the proximal normal to S at the point s̄ ∈ S, if there exists a constant 
M > 0 such that

 

The set of all such vectors ς, which represents a cone, is denoted by N̂S(s̄) and is called a 
proximal normal cone.

(b) Let f:H  →  R1  ∪  {+∞} be a lower semi-continuous function and x̄ ∈ dom f . A 
vector ς ∈  H is said to be the proximal subgradient of the function f at the point x̄ if 
(𝜍,−1) ∈ N̂epi f (x̄, f (x̄)). The set of all such vectors ς is denoted by 𝜕pf (x̄) and is referred as 
the proximal subgradient of the function f in the point x̄.

Below the necessary and sufficient condition [40,41] for a vector to be the proximal 
subgradient of a lower semi-continuous function at a given point is formulated.

Lemma 1. Let H be a Hilbert space, f:H → R1 ∪ {+∞} be a lower semi-continuous func-
tion, and x̄ ∈ dom f . A vector ς ∈ H is the proximal subgradient of the function f at x̄, i.e. 
𝜍 ∈ 𝜕pf (x̄), if and only if there exist constants R > 0 and δ > 0 such that

 

‖z‖2 → min, g𝛿(z) = p, z ∈ D ⊂ Z

�(p) ≡ lim
�→+0

��(p), ��(p) ≡ inf{‖z‖2:z ∈ Do,�
p }, Do,�

p = {z ∈ D:��g0(z) − p�� ≤ �}.

(6)⟨𝜍, s − s̄⟩ ≤ M‖s − s̄‖2 ∀s ∈ S.

(7)f (x̄) − ⟨𝜍, x̄⟩ ≤ f (x) − ⟨𝜍, x⟩ + R‖x − x̄‖2 ∀x ∈ S𝛿(x̄) ≡ {y ∈ H :��y − x̄�� < 𝛿}.
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6    K. P. Gaikovich et al.

Let us recall the concept of the Frechet normal to a closed set in a Banach space and define 
the corresponding Frechet subdifferential of a lower semi-continuous function (see [40,42]).

Definition 2. Let Ω be a non-empty subset of a Banach space X. Let x̄ ∈ cl Ω and u
Ω
→ x̄ 

means that u→ x̄ with u ∈ Ω. Then the non-empty cone set
 

is called the Frechet normal cone to Ω at the point x and is denoted by N̂(x;Ω).
Definition 3. Let f:X → R1 ∪ {+∞} be a lower semi-continuous function defined on a 

Banach space X, x̄ ∈ dom f . The set
 

is called the Frechet subdifferential of f at the point x̄. If x̄ ∉ dom f , we set 𝜕pf (x̄) = �.
Lemma 2. Let f:H → R1 ∪ {+∞}be a lower semi-continuous function defined on a Banach 

space X, x̄ ∈ dom f . Then x∗ ∈ 𝜕̂f (x) if and only if for every ε > 0 there exists a neighbour-
hood Xε such that

 

An important property of lower semi-continuous functions f:H → R1 ∪ {+∞} is that both 
the set ∂p f(x) (in the case of Hilbert space X) and the set 𝜕̂f (x) (in the space X from a rather 
vide class of Banach spaces) (for more details see, e.g. [41,42]) are both not empty for a 
dense set of points in dom f . In this paper, we assume that X is a Hilbert space for which 
the above-mentioned properties are fulfilled.

In [23,24,38], where non-linear problems more general as compared to (2) are consid-
ered, it was shown that the non-emptiness of the proximal subgradient ∂pβ(0) generates the 
corresponding construction of the modified Lagrange function in the problem (2)

 

where c is a penalty coefficient large enough. In its turn, the non-emptiness of the Frechet 
subdifferential 𝜕̂𝛽(0) inevitably leads to the modified Lagrange function in the problem (2)
 

where c is also a penalty coefficient large enough. So, it is convenient to combine these 
two cases in a common case, and to determine the mixed construction of the modified 
Lagrange function

 

where l1, l2 ∈ {0, 1}are the weight coefficients. It is this construction of the modified Lagrange 
function that is in use in this paper.

(8)N̂(x;Ω) ≡
�

x∗ ∈ X∗: lim sup
Ω

u→x

⟨x∗, u − x⟩
‖u − x‖ ≤ 0

�

(9)𝜕̂f (x̄) ≡ {x∗ ∈ X∗:(x∗,−1) ∈ N̂((x̄, f (x̄));epi f )}

(10)f (x) − ⟨x∗, x⟩ ≤ f (x�) −
�
x∗, x�

�
+ ���x� − x�� ∀x� ∈ X�.

(11)L�,2
c (z, �) ≡ ‖z‖2 + �

�, g�(z)
�
+ c��g�(z)��2, z ∈ D, � ∈ H ,

(12)L�,1
c (z, �) ≡ ‖z‖2 + �

�, g�(z)
�
+ c��g�(z)��, z ∈ D, � ∈ H ,

(13)L�
c (z, �) ≡ ‖z‖2 + �

�, g�(z)
�
+ c(l1

��g�(z)�� + l2
��g�(z)��2), z ∈ D, � ∈ H ,
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Inverse Problems in Science and Engineering    7

In [23,24,38], the corresponding concept of the generalized Kuhn–Tucker vector of the 
problem (2) is introduced. It is a vector � ∈ H, such that �(0) ≤ L�

c (z, �) ∀z ∈ D. In [23,24,38] 
the modified dual problem V �

c (�) → sup, � ∈ H , V �
c (�) ≡ infz∈D L

�
c (z, �) is also intro-

duced. The approximation of the solution z0 ∊ D (non-unique, in general) of initial non-linear 
exact problem (2), or, in other words, the construction of minimizing approximate solution 
in the sense of J. Warga, is realized, as in the convex problem, at the condition of a consistent 
approach of the regularization parameter α to zero in the regularized dual problem

 

and the value of error parameter of input data δ in the problem (2). In the problem (2), it 
is possible to obtain the explicit form for superdifferential

 

that is necessary to build the regularizing process of maximization in the dual problem. 
Here, the set Argmin{L�

c (z, �):z ∈ D} is not empty for � ∈ H due to conditions concerning 
input data in the problem (2).

In the assumption of the weak continuity of the operator gδ (avoiding details that can 
be found in [22–24,38]), it is possible to prove the theorem about the convergence of the 
non-linear version of the dualregularization method:

Theorem 1. Let �s, s = 1, 2,… be an arbitrary sequence of positive numbers converg-
ing to zero, and �(�s) → 0, �s∕�(�s) → 0, s → ∞. If the problem (2) has a Kuhn–Tucker  
vector in the above-noted generalized sense, then, in the supposition that at least one of 
two penalty coefficients l1, l2 is positive, there is a number c > 0 large enough so that the 
next limiting relations are fulfilled:

 

where zs, s = 1, 2, … are elements minimizing (at κ > 0) the modified Lagrange function 
L�s

c+�(z, �
�s ,�(�s)), z ∈ D, ��s ,�(�s), s = 1, 2,… are elements maximizing the strongly convex 

functional V �s

c (�) − �(�s)‖�‖2, � ∈ H on the set Λc ≡ {� ∈ H :‖�‖ ≤ c}, �0
c is a mini-

mum-norm generalized Kuhn–Tucker vector in the set Λc of the problem (2).
In the case, when this vector doesn’t exist, in the supposition that coefficients l1, l2 are 

positive, for an arbitrary sequence converging to +∞ of numbers cs, s = 1, 2, … such that 
csδ

s → 0, s → ∞, the next relations are fulfilled
 

where zs,  s  =  1,  2,  … are elements minimizing the modified Lagrange func-
tion L�s

cs (z, �
�s ,�(�s)), z ∈ D, ��s ,�(�s), s = 1, 2,… are elements maximizing on the set 

Λcs ≡ {� ∈ H :‖�‖ ≤ cs} the strongly concave functional V �s

cs (�) − �(�s)‖�‖2, � ∈ H.
In both above-considered cases from the number convergence  

‖zs‖2 → �(0) = ��z0��2, s → ∞ and the weak compactness of the set D and H-property of 
the Hilbert space, it follows that any weak accumulation point of the sequence zs, s = 1, 2, … 
is its strong accumulation point.

(14)V �
c (�) − �‖�‖2 → sup, � ∈ H

(15)�(V �
c (�) − �‖�‖2) = cl conv{g�(z∗):z∗ ∈ Argmin{L�

c (z, �):z ∈ D}} − 2��,

(16)‖zs‖2 → �(0) = ��z0��2, g0(zs) → 0, ��s ,�(�s)
→ �0

c , V
0
c (�

�s ,�(�s)) → �(0), s → ∞,

(17)‖zs‖2 → �(0), g0(zs) → 0,
����

�s ,�(�s)��� → +∞, V 0
c (�

�s ,�(�s)) → �(0), s → ∞,
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8    K. P. Gaikovich et al.

The most important feature of this non-linear algorithm in the construction of the mini-
mizing sequence is the application of the Tikhonov’s regularization [11] to solving the dual 
problem that provides the stability of the algorithm to data errors. This regularization in 
the process of maximization of the dual-concave function is a necessary procedure because 
of instability of infinite-dimensional problems, including concave problems. It should be 
stressed that only problems without data errors have been considered in previous papers 
related to the finite-dimensional Lagrange multiplier method cited above, and, hence, no 
regularization procedure has been proposed to solve ill-posed problems.

In problems of physical diagnostics considered in this paper, input data of the problem 
(2) include a finite error δR > 0, so that ‖‖g�R (z0)‖‖ ≤ �R, where z0 is the exact solution of 
the initial exact problem. At that, it is assumed that the sequence �k, k = 1, 2,… satisfies 
δ1 > δR. The minimizing approximate solution of the problem (2) considered in Theorem 
1 is constructed according to the stopping rule in the regularized iterative procedure of 
the gradient ascent in the regularized dual problem (14), using the explicit form for the 
superdifferential �V �R

c (�k) in (15) [22,23,38]:
 

To fulfil the convergence conditions of the approximate solution to the exact solution of the 
initial problem (2), sequences �k, �k, �k should tend to zero in a coordinated way:

where C0 > 0 is a constant.
To calculate the corresponding value of the superdifferential �V �R

c (�k) at the every step 
of the iterative procedure (18), the problem of the minimization of the modified Lagrange 
function L�R

c (z, �
k) → min, z ∈ D in (13) is solved. This procedure continues up to the 

largest number k = k(δR), for which the inequity δk ≥ δR is fulfilled. At that, the correspond-
ing solution of the minimization problem L�R

c (z, �
k(�R)) → min, z ∈ D is assumed as the 

approximate solution of the problem (2).
Summing up, it is possible to make next assertions. In solving of non-linear inverse 

scattering problem, we apply the new method of dual regularization,[22,23] where the 
initial inverse problem is considered as a problem of non-linear programming in the 
infinite-dimensional Hilbert space with the infinite-dimensional equality-kind constrain. 
It makes possible: (a) to use well-known advantages of dual approaches for the solution of 
conditional minimization problems with linear constrains (see, for example, in [27]); (b) 
to use Tikhonov’s stabilization, but only when solving the dual problem, that principally 
distinguishes the applied method from earlier developed dual methods in solving non- 
linear problems of finite-dimensional conditional minimization without regularization (see 
in [27,31–33] and included bibliography). As the closest to our work among those in the 
regularization theory we can mention papers.[43,44]

(18)�
k+1 = �

k + �k�V
�R
c (�k) − 2�k�k

�
k, k = 1, 2,…

(19)𝛿k ≥ 0, 𝛽k > 0, 𝛼k > 0, lim
k→∞

(𝛿k + 𝛽k + 𝛼k) = 0,
𝛼k

𝛼k+1
< C0,

lim
k→∞

|||�
k+1 − �k|||
(�k)2�k

= lim
k→∞

�k

�k
= lim

k→∞

�k

(�k)3
= 0,

∞∑
k=1

�k�k = +∞,
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Inverse Problems in Science and Engineering    9

3.  Fields in media and statement of inverse scattering problems

In media with the inhomogeneous distribution of complex permittivity �(r) = �i + �1(r),  
in a quite generous case of an inhomogeneity �1(r) in a multilayer medium with permit-
tivity εi in ith layer, the complex amplitudes of vectors of electrical and magnetic fields E, 
H [∼exp (−iωt)] are determined by the complex amplitude of the source electric current 
density j from the Maxwell equations:

 

 

where c the is light velocity, ω is the cyclic frequency. The contribution of �1(r) in (20) can 
be considered as an effective source current �eff = −

i�

4�
�1(z)�, so

 

Using the formalism of Green functions, the system of Equations (20) and (21) can be 
reduced to the non-linear integral equation [14]:

 

 

where the total electric field �(�) is expressed as the sum of the probing field ��(�) and 
scattered field �1(�). Equation (23) is a Fredholm integral equation of the second kind for 
solving the direct problem – calculation of �(�) that can be expressed by the Neumann 
series at the condition �1(�) << ��(�) in the range of inhomogeneities. The inverse scatter-
ing problem – to retrieve subsurface inhomogeneities �1(�

�) by measurements of scattered 
field – can be solved beginning with the Born approximation:

 

The convolution equation (24) for the probing field can be transformed in k-space over 
transversal co-ordinates:

 

where spectral components of Green tensors 
↔

�(�x , �y , z, z
�) have been obtained explicitly 

for arbitrary multilayer media in [14]. Various cases have been considered,[13–15] when 

(20)∇ × � =
i�

c
�,

(21)∇ × � + i
�

c
�� =

4�

c
�,

(22)∇ × � + i
�

c
�i� = −i

�

c
�1� +

4�

c
� =

4�

c
(�eff + �).

(23)�(�) = ��(�) + �1(�) = ��(�) −
i�

4� ∫
V

↔

�(��, �)�1(�
�)�(��)d��,

(24)�0(�) = ∫
V

�(��)
↔

�(x − x�, y − y�, z, z�)d��,

(25)�1(�) = −
i�

4� ∫
V

↔

�(��, �)�1(�
�)�0(�

�)d��.

(26)�0(�x , �y , z) = 4� ∫
z�

�(�x , �y , z
�)

↔

�(�x , �y , z, z
�)dz�,
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10    K. P. Gaikovich et al.

(25) can be reduced to convolution equations over transversal co-ordinates, and, then, 
using Fourier transform – to one-dimensional integral Fredholm equations of the first-
kind relative to ε1(κx, κy, z) that should be solved for each pair κx, κy. Finally, the inverse 
Fourier transform of obtained k-space distributions gives the desired solutions of initial 
three-dimensional problems.

In cases of one-dimensional media, corresponding inverse problems are much simplified. 
Equation (23) in any such case can be reduced to the one-dimensional integral equation 
in k-space:

 

However, the iterative solving of the inverse problem based on (13), as it was mentioned 
above, may lead to poor results for strong inhomogeneities. To solve such inverse problems 
in frameworks of the dual regularization method, it is reasonable to express the electric field 
on the interface of an inhomogeneous medium z = 0 from (27) as follows:

 

Then, the statement of such inverse problems can be based on the analysis of reflection 
coefficients at TH(∥) and TE(⊥) polarizations of plane waves or of some functional of these 
coefficients that can be calculated from initial differential equations for any one-dimensional 
inhomogeneity.

4.  Inverse problem of geomagnetic sounding at ultra-low frequencies

The first problem is, in fact, one of the oldest and well-studied ill-posed problems. Here, we 
apply to this problem the new method of dual regularization to solve it in a rather new state-
ment. In the ultra-low frequency band, analysis is much simplified. The approximation of 
the Leontovich’s boundary conditions is mostly valid in this band, so the field in the medium 
can be considered as a plane wave with components Ex , Hy (further indices are omitted) 
of electric and magnetic field that propagate in the nadir direction. Also, the permittivity 
at low frequencies is determined by the conductivity σ as ε = ε′ + iε″ ≈ i4πσ/ω. Maxwell’s 
equations for the complex amplitudes of electric and magnetic field are written as follows:

 

where zn < 0 is the lower boundary of the analysis region that includes the inhomogeneity 
of the conductivity profile to be found. Fields are measured at the surface level z = 0 in 
dependence on frequency:
 

These measurements are not independent, hence at the fixed electrical field, the spectral 
distribution of the corresponding magnetic field can be used to determine the profile of 
the medium conductivity. From (28) one can obtain the equivalent integral expression [9]:

(27)�(�x , �y , z) = �0(�x , �y , z) −
i�

4� ∫
z�

�1(z
�)

↔

�(�x , �y , z
�, z)�(�x , �y , z

�)dz�.

(28)�∥,⊥(𝜅x , 𝜅y , z = 0) = �
∥,⊥

0
(𝜅x , 𝜅y , 0) + R∥,⊥[𝜀1](𝜅x , 𝜅y)�

∥,⊥

0
(𝜅x , 𝜅y , 0).

(29)d2E

dz2
+ i

4��(z)�

c2
E = 0, H = −i

c

�

dE

dz
, zn ≤ z ≤ 0,

(30)E(�, z = 0) = E0(�), H(�, z = 0) = H0(�), � ∈ [�1,�2].
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Inverse Problems in Science and Engineering    11

 

and, assuming z = 0, obtain the non-linear integral equation to be solved to retrieve the 
conductivity depth profile σ(z) by the measured spectrum of the near-surface magnetic 
field H0 = H(ω, 0):

 

Similar equations can be obtained for the electric field. The Equation (31) can be solved 
iteratively beginning with the homogeneous profile σ(z) = σ0 = const in the kernel part of (32) 
as the first guess (Born approximation). For fields in homogeneous media, E0(�) = E0

0(�),  
H0(�) = H0

0 (�), and one has exact formulas:
 

 

where �s = c∕
√
2���0 is skin-depth. At that, the difference ΔH0(�) = H0(�) −H0

0 (�) can 
be used in the iterative algorithm:

 

 

where the Fredholm integral equation of the first kind (35) is solved at each step of the 
iteration process using, for example, the method of generalized discrepancy developed for 
complex-valued functions in the Hilbert space W1

2 (Sobolev’s space) [14].
This algorithm has been studied in numerical simulation, and it was found that for strong 

inhomogeneities, typical in real conditions, retrieval errors were quite large. In such cases, 
the kernel of the equation calculated in the first guess has large deviations of the true kernel, 
and, as a result, the solution diverges from the real profile that leads to an increase of errors 
at next steps of the iteration process.

(31)H(�, z) = −
4�i�

c2

z

∫
−∞

⎡
⎢⎢⎣

z�

∫
−∞

H(�, z��)dz��
⎤
⎥⎥⎦
�(z�)dz�,

(32)H0(�) = −
4�i�

c2

0

∫
−∞

⎡
⎢⎢⎣

z�

∫
−∞

H[�](�, z��)dz��
⎤
⎥⎥⎦
�(z�)dz�.

(33)E0(�, z) = E0
0(�) exp

(
z

�s
− i

z

�s

)
,

(34)H0(�, z) = −
(i + 1)c

��s
E0
0(�)

(
z

�s
− i

z

�s

)
= H0

0 (�) exp

(
z

�s
− i

z

�s

)
,

(35)ΔH0(�) =

0

∫
−∞

Ki[�i](�, z
�)Δ�i+1(z

�)dz�,

Ki[�i](�, z
�) = −

4�i�

c2

z�

∫
−∞

Hi[�i](�, z
��)dz��
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12    K. P. Gaikovich et al.

So, it is just the proper case to apply the proposed method of dual regularization. The 
mathematical statement of the inverse problem is based on the following assumptions: (i) the 
range of the inhomogeneity σ(z) lies in the finite interval zn < z < 0, σ(z) = σ(zn) at z ≤ zn; (ii) 
values of fields E and H are finite at z < zn. It gives the possibility to consider function classes 
determined in the finite interval [zn, 0], that makes it easier to argue the convergence of the 
regularization method. The solution of the direct problem is obtained from (29) to (30), 
so the statement of the inverse problem of geomagnetic sounding can be formulated like 
this: to find the conductivity profile �(z), z ∈ [zn, 0] so that at any frequency � ∈ [�1,�2] 
solutions E[�](�, z) and H[�](�, z) of the system (30) with boundary conditions

 

satisfy
 

The dual regularization method can be applied for fields’ measurements as has been pro-
posed in [16]. It should be noted that historically, beginning from the first works, the 
spectrum of the impedance Z0(ω) = E0/H0 has been used in analysis in the magnetotel-
luric exploration. It is easy to reformulate the problem in terms of impedance; however, to 
demonstrate results in the same way as in all three problems considered here, we involve in 
analysis the spectrum of the reflection coefficient R0(ω) of equivalent vertical plane wave that 
can be calculated as R0(ω) = (Z0(ω) − 1)/(Z0(ω) + 1), and the condition (30) is changed to

 

In practice, magnetotelluric data are often measured in very noisy conditions. When we 
have multifrequency measurements, it is possible to minimize the noise like in [15], by the 
transformation of multifrequency data to time domain (by inverse Fourier transform over 
positive frequencies):

 

where Δω is the band of analysis. At that, the non-correlated part of noise is much sup-
pressed in the range, where the signal is formed by subsurface inhomogeneities. Also, it 
is convenient to change the time parameter t to the space parameter that determines the 
effective depth of a scattering element zs = −0.5tc∕Re(

√
�) (taking into account the light 

velocity in a medium and signal path to and from a scattering element), and write the new 
condition for transformed data as follows:

 

To apply the dual regularization in non-linear cases, it is necessary to use modified Lagrange 
functions with added penalty terms (13) taking into account that input data of the problem 

(36)E[�](�, z = 0) = E0(�),

H[�](�,Z = Zn) = −(i + 1)
√
2��n∕�E[�](�, z = zn)

(37)H[�](z = 0, �) = H0(�).

(38)R[�](�) = R0(�).

(39)R0(t) =
1

Δ� ∫� R0(�) exp(i�t)d�,

(40)R[�](zs) = R0(zs).
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Inverse Problems in Science and Engineering    13

(40) include a finite error δR > 0. Assuming l1 = l2 = 1 in (13), the proper modified Lagrange 
function for our problem can be expressed as follows:

 

where ⟨⋅⟩ is a scalar product, � = (�1, �2), ‖‖�∕�0
‖‖2L2

=
1

�z
∫
�z
(�(z)∕�0)

2dz, Δz is the region 
of analysis, σ0 = σ(z = 0), � = (ReR, ImR) are the two-dimensional vectors, 𝜇 > 0. When 
the parameter μ is large enough, the minimum of the modified Lagrange function L�R

� [�](�) 
over �(z) exists for certain for any �. The regularized dual problem is a problem of maxi-
mization of the concave functional (14) in the Hilbert space L2

2(zs1, zs2). In this case, it is 
expressed as follows:

 

where the maximum is found over � from the set Λ� ≡ {� = (�1, �2) ∈ L2
2(zs1, zs2):||�|| ≤ �},  

D = {σ ∊ L2(zn, 0):0 ≤ σ(z) ≤ σmax}, where σmax is a sufficiently large value. At the maximiza-
tion of the functional (41), we use an element of the supergradient (15) in this functional 
that can be expressed explicitly:

 

where cl conv A means the closing convex hull of a set A, Σ�[�] = Argmin{L�[�](�):� ∈ D}.  
The desired solution is obtained as a saddle point of this process of minimization of (41) 
over � and simultaneous maximization of (42) over dual variable �.

The numerical algorithm that realizes this method is based on conventional gradi-
ent minimization of (41) and maximization of the functional (42) using the expression 
for its gradient (43). This problem should be solved for data with a finite error, so that 
||�[�(z)] − �0||2L2

≡ 1

Δzs
�
zs

||�[�(z)](zs) − �0(zs)
||2dzs ≤ �2R, where Δzs determines the 

region of data used in analysis. Based on reasons to develop a rather universal algorithm 
and results of numerical simulations, stopping rules for developed algorithms are cho-
sen somewhat different from the theoretical rule [22,23,38] given after formula (19). 
At that, we assume μ = 10 in (41), and begin the iterative procedure (18) with �k=1 = 0, 
�W�(k=1)

� (�) =
1

Δzs
{�[�k=1(z) = �0](zs) − �0(zs)} − 2��, and calculate the initial discrep-

ancy 𝛿k=1 = ‖‖‖�[𝜎
k=1(z) = 𝜎0] − �0

‖‖‖L2

. In the iterative procedure (18) further values of 
discrepancy 𝛿k = ‖‖‖�[𝜎

k(z)] − �0

‖‖‖L2

are calculated; at that, we used sequences αk = k−1/3, 
�k = 10−2k−1∕2, k = 1, 2,… that satisfy conditions (19). This iterative procedure (proceeds 
up to the largest number k = k(δR), for which one of stopping rules ‖‖‖𝜕W

𝛿R
𝜇 (�k)

‖‖‖ > a, 𝛿k ≥ b𝛿R 
is fulfilled (a, b are values determined from the numerical simulation). The corresponding 
point σk gives us the desired solution of the problem.

The computer algorithm of this method has been worked out and used in numerical 
simulations of this inverse problem. For initial profile σ(z), the frequency dependence R0(ω) 
is calculated for the vertical incidence; random Gauss-distributed errors are added; these 

(41)

L
�
R

� [�](�) = ‖‖�∕�0
‖‖2 + 1

Δz
s
∫
z
s

⟨
�(z

s
),�[�](z

s
) − ��(zs)

⟩
dz

s

+ �

{(
1

Δz
s
∫
z
s

||�[�](zs) − ��(zs)
||2dzs

)1∕2

+
1

Δz
s
∫
z
s

||�[�](zs) − ��(zs)
||2dzs

}

(42)W
�R
� (�) = V

�R
� (�) − �||�||2 = min

�∈D
L
�R
� [�](�) − �||�||2 → max||�||≤�,

(43)�W
�R
� (�) = cl conv{�[�] − �0:� ∈ Σ�[�]} − 2��,
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14    K. P. Gaikovich et al.

‘data of measurements’ are transformed to R0(zs) that is used as input data in (39). Finally, the 
retrieved profile is compared to the initial one. It should be mentioned that the conductivity 
of the earth crust lies in the very broad range 10−5–10−1 Sm/m, so it is necessary to adjust 
parameters of measurements to available conditions in each case specifically.

The example of numerical simulation shown in Figure 1 demonstrates the retrieval 
of the conductivity profile σ(z) in the medium with a high enough conductivity 
σ0 = σ(z = 0) = 0.01 Sm/m. To extract the informative part of the signal, input data are 
given as deviations Δr = ||R0[�(z)] − R[�0]

|| of reflection coefficients calculated for the inho-
mogeneous medium with σ(z)from those calculated for the half-space with � = �0, z ≤ 0.

In Figure 1(a), it is possible to see calculated multifrequency data and simulated ‘meas-
urement data’ with random normally distributed uncorrelated errors with rms = 5 × 10−6. 
The skin-depth δs is changed in the interval 0.1–10 km in the frequency range of analysis. In  
Figure 1(b), corresponding synthesized pseudopulses are shown, and it can be seen that errors 
are much suppressed at such a transformation. Dependence Δr(zs) that corresponds to ‘meas-
urements’ (line 2) is used in the dual regularization algorithm (40–43) to retrieve a sharp gauss 
inhomogeneity at the depth 1.5 km (see in Figure 1(c)). Results demonstrate a good retrieval 
at the extremely high level of data errors. It is interesting to compare the position zsmaxof the 
maximum of synthesized pulse in the distribution Δr(zs) (Figure 1b) to the position zmax of 
the maximum in depth profile σ(z) in Figure 1(c). It is easily seen that zsmax ≈ zmax. This fact 
can be used for the preliminary diagnostics of the underground conductivity stratification.

The simulation shown in Figure 2 demonstrates an example of retrieval in the medium with 
much less conductivity σ0 = 2 × 10−4 Sm/m. In Figure 2(a), again, it is possible to see calculated 
multifrequency data and simulated ‘measurement data’ with random errors (rms = 5 × 10−4).  

Figure 1. (a) 1 – Δr(f ) = ||R0[�(z)](f ) − R[�
0
](f )|| calculated for initial profile (line 1 in Figure 1(c)), 2 –  

‘data of measurements’ with random errors; (b) 1 – synthesized pseudopulse Δr(z
s
) = ||R0[�(z)](zs) − R[�

0
](z

s
)|| 

obtained for Δr(f) (line 1 in Figure 1(a)), 2 – synthesized pseudopulse Δr(zs) obtained for data with errors 
(line 2 in Figure 1(a)); (c) 1 – initial profile σ(z); 2 –retrieved profile; f = ω/2π.

Figure 2. The same notation as in Figure 1.
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Inverse Problems in Science and Engineering    15

In Figure 2(b) corresponding synthesized pseudopulses are shown, and Δr(zs) that corre-
sponds to ‘measurements’ (line 2) is used to retrieve the simulated inhomogeneity of a more 
complicated form: a combination of a layer with the constant conductivity with a half of gauss 
profile at the depth of about 5 km (Figure 2(c)). Results demonstrate the ability of the devel-
oped algorithm to retrieve details of subsurface profiles. Again, it is worth mentioning that the 
position of the maximum in dependence Δr(zs) corresponds to that of the maximum of σ(z).

Notwithstanding these impressive results, it should be stressed that this method doesn’t 
work automatically – it must be adjusted to each case specifically, including the choice of 
measurement and algorithm parameters, schemes of functional minimizations, control of 
discrepancy convergence up to the level of measurement errors, numerical simulation and 
so on. Also, it is necessary to note that in cases when errors are not uncorrelated, i.e. have 
the frequency dependence similar to the real signal, it leads to large distortion of retrieved 
parameters; however, they should be studied in every case separately.

5.  Microwave monitoring of water diffusion in soil

Our second problem is a new one and much more complicated in numerical realization. The 
study in this case is based not only on numerical simulation, but also on experimental test-
ing. In experiments, we have applied equipment of near-field microwave tomography of sub-
surface dielectric inhomogeneities developed in [13–15], for monitoring one-dimensional 
process of water diffusion in soil. The main motivation of this study was to test this new 
method of dual regularization for this simpler, one-dimensional inverse scattering problem 
to overcome available restrictions related to the inapplicability of the Born approximation 
for strong inhomogeneities. However, even this simplified problem was extremely compli-
cated for calculations, and we used the code parallelization in the numerical algorithm to 
solve this problem with the supercomputer cluster in Nizhny Novgorod State University.

The near-field tomography of three-dimensional distribution of complex permittivity 
�1(�) is based on measurements of signal complex amplitudes at 801 frequencies in the range 
1.7–7.0 GHz with the source–receiver system composed of Agilent E5071B vector network 
analyzer and two identical transmitting and receiving planar bow-tie antennas in the bistatic 
configuration. They were scanning together in the rectangle x–y area above the targets.

In the following analysis, like in [15], we use the plane wave decomposition and the 
transformation of multifrequency data to time domain. Variations of complex amplitudes 
of the received signal in the point �r (the vector that marks the receiving antenna position) 
can be expressed as the inverse Fourier transform of their transversal spectrum

 

For plane antennas, this signal is the convolution of scattered field variations and antenna 
function, so one has its k-space representation as follows:

 

The scattered field is determined by the incident field and the reflection coefficients on TH 
and TE polarizations:

(44)s(xr , yr ,�) = ∬ s(�x , �y ,�) exp(i�xxr + i�yyr)d�xd�y .

(45)s(�x , �y , zr) = 4�2�1(�x , �y , zr)�(�x , �y).

D
ow

nl
oa

de
d 

by
 [

O
rt

a 
D

og
u 

T
ek

ni
k 

U
ni

ve
rs

ite
si

] 
at

 1
0:

33
 2

4 
M

ar
ch

 2
01

6 



16    K. P. Gaikovich et al.

 

where k-space representation for the incident field obtained in [14] is:
 

 

where k = ω/c, kz =
√

k2 − �2
x − �2

y , 𝜅⊥ = 𝜅2
x + 𝜅2

y, zs, zr are source and receiver altitudes 
above the surface. The current distribution on antennas and its transversal spectrum 
have been calculated and presented in [15]. Also, we assume the reciprocity condition 
Fi(�x , �y , zs) = const ji(�x , �y). As a result, we obtain the expression for the signal measured 
as a function of time t:

 

The value of const in (48) is determined by measurements of initially dry sandy ground.
So, to calculate (48), it is enough to calculate reflection coefficients for plane waves 

reflected from the half-space with the one-dimensional profile of permittivity. Here, like 
in [15], we use the possibility to transform the multifrequency problem into that in time 
domain τ using the inverse Fourier transformation of multifrequency data to the synthe-
sized pseudopulse

 

that can be represented in dependence on the effective depth parameter zs according 
s(zs, t) = s(� = −2zsRe

√
�0∕c, t). The strong maximum of s(zs) marks the position of the 

surface; values of zs are counted from this point.
There is a problem that reflection coefficients in (49) are determined by the frequency- 

dependent complex permittivity depth profile ε(z, ω), and this two-dimensional parameter 
is unsuitable for retrieval. In this case, the proper one-dimensional parameter to be retrieved 

(46)
�

1
(𝜅x , 𝜅y , zr) = [R∥(𝜅x , 𝜅y)�

∥

0
(𝜅x , 𝜅y , 0) + R⊥(𝜅x , 𝜅y)

�⊥
0
(𝜅x , 𝜅y , 0)] exp

(√
k2 − 𝜅2

x − 𝜅2

y zr

)
.

(47)

��(𝜅x , 𝜅y , 0) = −
2𝜋

𝜔
exp

{
i
√

k2 − 𝜅2

x − 𝜅2

y zs

}

×

{
jx(𝜅x , 𝜅y , zs)

{[
𝜅2

x kz

𝜅2

⊥

x⃗
0
+

𝜅x𝜅ykz

𝜅2

⊥

y⃗
0
− 𝜅xz⃗0

]
∥
+

k2

𝜅2

⊥kz

[
𝜅2

y x⃗0 − 𝜅x𝜅yy⃗0

]
⊥

}

+jy(𝜅x , 𝜅y , zs)

{[
𝜅x𝜅ykz

𝜅2

⊥

x⃗
0
+

𝜅2

y kz

𝜅2

⊥

y⃗
0
− 𝜅yz⃗0

]
∥
+

k2

𝜅2

⊥kz

[
−𝜅x𝜅yx⃗0 + 𝜅2

x y⃗0

]
⊥

}}
,

(48)

ji(�x , �y , zs) =
1

4�2

∞∫
−∞

∞∫
−∞

ji
(
xr − �x − x, yr − �y − y, zs

)
e−i�xx−i�yydxdy

=
1

4�2
e−i�xxr−�xx−i�yyr−�yy

∞∫
−∞

∞∫
−∞

ji(x
�, y�, zs)e

−i�xx
�−i�yy

�

dxdy

=
1

4�2
e−i�x(xr−�x)−i�y(yr−�y)ji(�x , �y),

(49)

s(xr , yr ,𝜔, t) = −const∬ 1

2𝜋𝜔
exp

{
i(𝜅x𝛿x + i𝜅y𝛿y +

√
k2 − 𝜅2

x − 𝜅2
y (zs + zr)

}

×[R∥[𝜀(z,𝜔, t)](𝜅x , 𝜅y)
{
j2x

𝜅2
x kz

𝜅2
⊥

+ j2y
𝜅2
y kz

𝜅2
⊥

}

+R⊥[𝜀(z,𝜔, t)](𝜅x , 𝜅y)
{
j2x

k2𝜅2
y

𝜅2
⊥kz

+ j2y
k2𝜅2

x

𝜅2
⊥kz

}
]d𝜅xd𝜅y .

(50)s(� , t) =
1

Δ� ∫� s(xr , yr ,�, t) exp(i��)d�
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Inverse Problems in Science and Engineering    17

is the profile of volume water content fw(z) in the sand that determines permittivity variation 
in the process of water diffusion in soil. Various dielectric mixing formulas can be applied 
to calculate the permittivity profile; we use the De Loor formula [45] that determines 
ε(z, ω) = F[fw(z)](ω). Then, our problem is formulated like this: to find the profile variations 
fw(z, t) that satisfy the equation between calculated and measured data:

 

So, according to (13), the modified Lagrange function for the dual regularization method 
can be written at each t as follows:

 

where ‖‖fw‖‖2L2

=
1

�z
∫
�z

fw(z)
2dz, � = (�1, �2), 𝜇 > 0. The regularized dual problem is a problem 

of maximization of the concave functional
 

where D = {fw ∊ L2(zn, 0):0 ≤ fw(z) ≤ 1}. Here, like in (40–42), the complex-valued reflection 
signal s is considered as a two-dimensional vector. The supergradient of the functional (53) 
is expressed explicitly, similar to (43). The desired solution, is obtained as a saddle point 
of the process of minimization of (52) over fw at the maximization of (53) over the dual 
variable �, using the same algorithm as described above for the problem of geomagnetic 
sounding (40)–(42). To retrieve the whole water diffusion process fw(z, t), the inverse prob-
lem (50)–(52) should be solved at each time t.

In our numerical study, we simulated conditions, similar to those in real experiment. The 
evolution of the water content in the diffusion process has been simulated by exponential 
profiles fw(z, t) = fw0 exp [zt0/Δz(t0 + t)]. For each time t the corresponding signal s(ω, t) 
has been calculated as a function of frequency; random errors that correspond to those 
in real experiment (they are frequency-uncorrelated in this case) are added, and these 
‘measurement data’ are transformed into a synthesized pseudopulse s0(zs, t) that is used to 
solve the inverse problem.

In Figure 3, one can see simulated and retrieved profile evolution; in Figure 4 – the 
corresponding evolution of pseudopulse calculated by exact s(ω, t) (in Figure 3(a)), and by 
data with errors (in Figure 3(b)).

As it is possible to see from Figure 3, the simulated evolution is retrieved quite well.
In real experiment, the initial water content was prepared by uniform water spilling 

under source–receiver antennas – totally about 1 g/cm2. After its absorption into the soil 
near-surface layer, measurements begin.

In Figure 5(a), one can see the dynamics of measured multifrequency data related to water 
diffusion; the corresponding dynamics of pseudopulse synthesized by measured multifre-
quency data is given in Figure 5(b), and the retrieved evolution of the water volume content 
fw(z, t) in the process of water diffusion in sand is demonstrated in Figure 5(c). Effects of 

(51)s[fw(z)](zs, t)) = s0(zs, t).

(52)

L
�
R

� [fw](�) =
‖‖fw‖‖2 + 1

Δz
s
∫
z
s

⟨
�(z

s
),
(
�[f

w
](z

s
) − ��(zs)

)⟩
dz

s

+ �

{(
1

Δz
s
∫
z
s

||�[fw](zs) − ��(zs)
||2dzs

)1∕2

+
1

Δz
s
∫
z
s

||�[fw](zs) − ��(zs)
||2dzs

}
,

(53)W
�R
� (�) = min

�∈D
L
�R
� [fw](�) − �||�||2 → max||�||≤�,
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18    K. P. Gaikovich et al.

the diffusion process are seen both in measured multifrequency data (Figure 5(a)) and in 
corresponding synthesized pseudopulse (Figure 5(b)). As it is possible to see in Figure 5(c), 
the retrieved evolution of water content looks quite reasonable: at deeper layers it grows with 
time, and the profile tends to the homogeneous distribution with the content that is near 
to its saturated value (about 0.3). We hope that a similar dual regularization approach can 

Figure 5. (a) Measured dynamics of multifrequency data in the process of water diffusion in sandy soil; 
(b) dynamics of pseudopulse synthesized by data in Figure 5(a); (c) retrieved evolution of water volume 
content in this process obtained from the solution of (50)–(52).

Figure 3. Simulation of water diffusion retrieval: (a) simulated fw(z,  t); (b) retrieved by data shown in 
Figure 4(b).

Figure 4. Dynamics of pseudopulse: (a) calculated by exact ‘data’; (b) calculated by data with errors.
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Inverse Problems in Science and Engineering    19

be applied in the much more difficult three-dimensional problem of subsurface microwave 
tomography.

6.  Diagnostics of periodic inhomogeneity of multilayer structures by 
multifrequency X-ray reflection

The third problem considered demonstrates the adaptation of the dual regularization 
method to the diagnostics based on multifrequency measurements of the power reflection 
coefficient, when the phase information is lost. Here, we study the diagnostics of permittivity 
inhomogeneities in multilayer periodical structures that are basic elements of the modern 
X-ray optics.[12] Some deviations from the desired perfect meander structure appear as a 
result of the material diffusivity related to the epitaxial technique used in the production 
of structures. One-dimensional structure defects can be described in terms of the periodic 
permittivity profile. Multilayered periodical structures in X-ray optics are widely used as 
reflectors, polarizers and filters in the ‘soft’ X-ray range since their invention in 1976.[46] 
Their parameters are optimized for different purposes, but deviations from desired mean-
der structures distort their predicted properties. For diagnostics of these structures, it is 
possible to use reflectometry measurements of X-ray scattering. The reflectometry method 
has obvious advantages: it is non-contact, non-destructive and fast in comparison with the 
electron microscopy or secondary ion mass spectrometry.

Unfortunately, unlike two above-considered problems, phase measurements are very com-
plicated in this spectral band, so power reflection coefficients are used in analysis that makes 
the solution much more difficult, because such a problem is more underdetermined, i.e. more 
ill-posed. The problem of the permittivity profile evaluation from the X-ray scattering data 
has been considered earlier in frameworks of parameterization approaches. In the theory 
represented in [47], a symmetrical meander structure with exponential inhomogeneities has 
been considered. In [48], authors proposed the linear model to estimate the asymmetry of 
the profile. In [12], this inverse problem has been solved to obtain the permittivity profile 
of inhomogeneities from the obtained integral equation. But, as it was found, the solution 
of this problem based on non-linear integral equation also has serious restrictions related to 
errors of the Born approximation used as the first guess in the iterative solution and to errors 
of such integral representation itself. Again, to overcome these problems, algorithms of the 
dual regularization method have been worked out and studied in numerical simulation.[49] 
It was shown that profiles of diffuse inhomogeneities can be retrieved with a good quality, but 
the success was strongly dependant on the successful choice of the first guess. The numerical 
study shows that the absence of phase information leads to serious problems in the solution. 
Sometimes results deviate far from the exact solution, i.e. it corresponds to a local minimum 
of the Lagrange functional. To realize all advantages of the dual regularization, it was necessary 
to fit the parameters of the iteration scheme using the available freedom of their choice, or to 
find the solution as the deviation of a reasonably chosen first guess.

Here, to compensate the lack of phase information, we propose a new approach in the 
dual regularization method that involves a priori information about the membership of 
the desired solution to a compact set of functions, in particular – to bound monotonous 
or convex monotonous functions.

It is important to note that measurement accuracy high enough is needed to apply 
this method in practice. For example, to achieve the necessary level of accuracy, multiple 

D
ow

nl
oa

de
d 

by
 [

O
rt

a 
D

og
u 

T
ek

ni
k 

U
ni

ve
rs

ite
si

] 
at

 1
0:

33
 2

4 
M

ar
ch

 2
01

6 



20    K. P. Gaikovich et al.

measurements have been averaged in [12] over 10 realizations. To avoid this difficulty, we 
propose to use the transformation of multifrequency data to that in time domain in the 
same way as above. In such a synthesized pulse, measurement errors are much suppressed 
in the informative part of this pseudopulse.

Following [12], consider a periodic multilayer (in z-direction) medium with the period 
d = d1 + d2 with a complex permittivity profile ε(z) = ε′(z) +  iε″(z). Assuming that this 
profile of inhomogeneities ε1(z) = ε1(z + d) is also periodic, it can be expressed as follows:

 

i = 0, 2, …, N − 1. Dielectric parameters of layers are, in general, absorbing and frequency- 
dependent. Because ε1(z) is formed by mutual penetration of two components of the  
meander structure, it is reasonable to represent it as

 

where complex-valued permittivity perturbations of this mixture are determined by the 
real-valued profilef(z) (of course, any other mixing formula can be used here).

In the proposed reflectometry diagnostics, the frequency spectrum of the difference
 

between the measured power reflection coefficient and that calculated by known parame-
ters of the ideal meander structure with parameters d1, d2, N is in use. The statement of the 
inverse scattering problem is formulated like this: to find such a profile f(z) that the condition

 

for reflection coefficients |R|2[f ] calculated for a profile f(z) is satisfied at any frequency 
� ∈ [�1,�2].

As it was mentioned above, the real measurement errors can be comparable to values 
of Δr0. To avoid this difficulty, we use the transformation of multifrequency data to time 
domain, introducing, as above, the length parameter zs that in this case, of course, doesn’t 
have the simple meaning of the depth of scattering elements:

 

At that, the condition (56) is transformed to
 

(54)𝜀(z) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀01, z < 0

𝜀02 + 𝜀1(z), id ≤ z < id + d1
𝜀03 + 𝜀1(z), id + d1 ≤ z ≤ id + d1 + d2
𝜀04, z > Nd,

,

(55)𝜀1(z) =

{
𝜀02+𝜀03

2
+

𝜀02−𝜀03

2
f (z), id ≤ z < id + d1

𝜀02+𝜀03

2
−

𝜀02−𝜀03

2
f (z), id + d1 ≤ z ≤ id + d1 + d2

,

(56)Δr0(�) =
||Rm(�)

||2 − ||R0(�)
||2

(57)Δr[f ](�) = ||R[f ](�)||2 − ||R0(�)
||2 = Δr0(�)

(58)Δr0(zs) =
1

Δ� ∫� Δr0(�) exp(i�zs∕c)d�.

(59)Δr[f ](zs) =
||R[f ](zs)||2 − ||R0(zs)

||2 = Δr0(zs).
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Inverse Problems in Science and Engineering    21

The modified Lagrange functional (13) of this problem can be written as follows:
 

where ‖‖f ‖‖2L2

=
1

Δz
∫
Δz
f (z)2dz. In this case, real and imaginary parts of the transformed 

real-valued reflection coefficient carry the same information, so only the real-valued term is 
included in the Lagrange functional. The corresponding regularized modified dual problem 
consists of maximization of the concave functional:

 

The supergradient of the functional (61) is expressed explicitly, similarly to (43). Thus, as 
above, the scheme of the dual regularization method consists of the gradient minimization of 
(60) over f at the simultaneous maximization of (61) over � using the same iterative scheme 
as described above for the problem (40)–(42). The function f(z) in the saddle point gives 
us the desired regularized solution.

The a priori information about whether the desired solution f belongs to one of compact 
sets of functions D (monotonously decreasing M

↓c or increasing M
↑c functions bound by 

a finite constant, or convex monotonously decreasing M̂
↓c or increasing M̂

↑c functions) is 
introduced at the transformation of infinite-dimensional problem (59)–(61) to a finite- 
dimensional one. There are four regions of the monotonous increasing and decreasing over 
a structure period:

 

At a given discretization n = N/4, monotonous parts of function f in each of four regions 
in (62) can be approximated as corresponding convex combinations

 

 

(60)

L
�
R

� [f ](�) = ||f ||2 + 1

z
smax

∫
z
smax

0

�(z
s
)Re

(
Δr[f ](z

s
) − Δr

0
(z

s
)
)
dz

s

+ �

{(
1

z
smax

∫
z
s max

0

||Δr[f ](zs) − Δr
0
(z

s
)||2dzs

)1∕2

+
1

z
smax

∫
z
s max

0

||Δr[f ](zs) − Δr
0
(z

s
)||2dzs

}
.

(61)W
�R
� (�) = min

f∈D
L
�R
� [f ](�) − �‖�‖2 → max,

(62)D = f ∈

⎧
⎪⎪⎨⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

M
↑c or M̂

↑c, 0 ≤ z < d1∕2

M
↓c or M̂

↓c, d1∕2 ≤ z < d1
M

↑c or M̂↑c, d1 ≤ z ≤ d1 + d2∕2

M
↓c or M̂

↓c, d1 + d2∕2 ≤ z ≤ d1 + d2

⎫
⎪⎪⎬⎪⎪⎭

∈ L2(0, d):0 ≤ f (z) ≤ 1

⎫
⎪⎪⎬⎪⎪⎭

.

(63)f =

n∑
j=0

ajT
(j),

T (j) =

{
1, i ≤ j

0, i > j
, f ∈ M

↓c, T (j) =

{
1, i ≤ j
n−i

n−j
, i > j

, f ∈ M̂
↓c

D
ow

nl
oa

de
d 

by
 [

O
rt

a 
D

og
u 

T
ek

ni
k 

U
ni

ve
rs

ite
si

] 
at

 1
0:

33
 2

4 
M

ar
ch

 2
01

6 



22    K. P. Gaikovich et al.

 

of properly chosen n-dimensional vectors T(j) (basis in Rn) that correspond to vertexes of 
corresponding convex polyhedrons [11] that represent these sets. So, in the gradient minimi-
zation of (60), instead of vector f, we deal with vector of coefficients a in the decomposition 
(63), and it gives us a monotonous function f at each step of this process.

Numerical algorithms of the dual regularization method (59–61) have been worked out, 
using the same iterative scheme as above, and applied in the simulation of the proposed diag-
nostics of inhomogeneity profile of permittivity in multilayer structures. Here, we present 
the numerical simulation for inhomogeneities in the periodic Mo-Si 50-layer structure (the 
same as in [12]), which is retrieved by multifrequency reflectometry data in the wavelength 
range � = 12.5 ÷ 14.5 nm at the elevation angle θ = 85°. As it has been shown in [12], in this 
spectral range the reflection coefficient has a considerable sensitivity to profile variations.

In Figure 6, results of simulation of dual regularization method (59–60) on the sets 
M̂

↓c and M̂
↑c are shown. In this case, we use multifrequency ‘measurement data’ with 

errors, which are simulated by uncorrelated Gauss-distributed random distribution with 
rms = 0.036 (Figure 6(a)) that correspond to the accuracy of single measurements in [12], 
where, to achieve an acceptable error level, data have been averaged using 10 independent 
measurements (errors were frequency-uncorrelated).

One can see that the ‘measurement’ noise in Figure 6(a) (line3) is mainly suppressed in 
the corresponding pseudopulse in Figure 6(b) in the whole region of analysis, because it is 
shifted to larger values of zs. As a result, a good accuracy of retrieval is achieved as is seen 
in Figure 6(c). Profiles of inhomogeneity are retrieved quite well notwithstanding the loss 
of the phase information. It is hardly possible to realize a universal algorithm suitable for an 
arbitrary profile of inhomogeneity; nevertheless, for diffusive inhomogeneities, when pro-
files are monotonously decreasing (increasing) from layers’ interfaces, the developed algo-
rithm gives good results in a wide enough range of possible parameters of inhomogeneities.

To demonstrate advantages of the data transformation more in details, the informative 
part of the signal |Δr| = ||||R|

2 − ||R0
||2||| is given along with the noise |�r| in Figure 7(a); their 

transformations in synthesized pseudopulses are shown in Figure 7(b).

T (j) =

{
0, i < j

1, i ≥ j
, f ∈ M

↑c, T (j) =

{
n−j

n−i
, i < j

1, i ≥ j
, f ∈ M̂

↑c, T (1) = 0

Figure 6. (a) 1 – reflection coefficient ||R0(�)||2 for unperturbed structure, 2 – |R(�)|2 for simulated profile, 
3 – data with errors ||Rm(�)||2; (b) corresponding synthesized pseudopulses: 1 – ||R0(zs)||2, 2 – ||R(zs)||2, 3 
– ||Rm(zs)||2; (c) 1 – perfect periodic meander structure (one period), 2 – simulated profile of Re�(z), 3 – 
retrieved profile, 4 – first guess.
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As it is clearly seen from Figure 7, large measurement errors in measured multifrequency 
data (Figure 7(a)) are much suppressed up to large values of delay parameter zs > zsmax in the 
corresponding synthesized pseudopulse (Figure 7(b)), so we have an informative interval 
broad enough, where the signal exceeds the level of errors. Using values of the pseudopulse 
in this interval, a good retrieval quality has been obtained as it is demonstrated in Figure 6.

The described numerical simulation of the proposed method of dual regularization in the 
pseudopulse diagnostics of periodic structures mostly leads to a good retrieval for profiles 
with various gradients of permittivity. But again, it should be stressed that this method 
doesn’t work automatically; in cases, when discrepancy can’t be minimized below the level 
of data errors, the initial guess should be changed and obtained solutions always should be 
studied attentively in the numerical simulation.

7.  Conclusion

Results of this study show that the dual regularization method provides a remarkable pro-
gress in the solution of above-considered non-linear ill-posed problems. It is demonstrated 
that this new method can be used in the vast range of applications to physical diagnostics 
in geophysical prospection, remote sensing and non-destructive testing. Also, we hope to 
develop this approach to the solution of three-dimensional inverse scattering problems in 
electromagnetic subsurface tomography.[15]
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Figure 7.  (a) Informative part of signal |Δr(�)| = ||||R(�)|
2 − ||R0(�)||2||| for simulated profile and the  

random error |�r(�)|; (b) corresponding synthesized pulses ||Δr(zs)|| = |||||R(zs)||
2
− ||R0(zs)||2|||, ||�r(zs)|| vs. zs.
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