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Abstract - As it is well known, inverse problems based on Volterra equations 
are, as a rule, well-posed. But in the case when a function should be retrieved in 
the range which is wider than the range where the right side of the equation is 
given, the solution appears an ill-posed inverse problem. A number of physical 
examples is given, and it is shown that such inverse problems could be 
successfully solved on the basis of Tikhonov's method of general discrepancy. 

 
 Introduction 
 Let us consider the Volterra-type equations of the 1-st and 2-nd kind: 
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These equations are practically well-posed in [a,b], when the right side of (1) or (2) is given in 
the same range a ≤ t ≤ b. More exactly, the equation (2) has a continuous and unique solution, 
if the kernel and the right side of (1) are continuous in [a,b]. The equation (1) has the 

continuous solution, if there are continuous derivatives 
df
dt

 and 
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,  f(a) = 0, and K(t,t) ≠ 0 

in [a,b].  
 There is the possibility of the new formulation of the problem for the Volterra-type 
equations. It appears, when the right side of equations (1) and (2) is given in the [a,c] , where         
c < b, i.e., when the retrieval range is wider than the range, in which the right side f(t) is given. 
In that case (1) and (2) can be rewritten as 
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One can see that if we suppose that not only f(t) is known in [a,c] but also the function ϕ(s), 
we have the effective right sides F(t) and F′(t), and equations (3) and (4) are Fredholm 
integral equations of the 1-st kind relative the solution in [c,b]. Such equations are typical ill-
posed problems. It is clear, that the solution of (1) and (2) in the whole range [a,b] by f(t) 
given in [a,c] is still more complicated problem. In this case these integral equations are the 
ill-posed,  type of which has yet no special name. 
 The most effective approach to solution of ill-posed integral equations is the Tikhonov’s 
theory based on generalized discrepancy principle and the solution method of the same name 
[1].The main preference of Tikhonov’s method consist in the uniform convergence of the 
retrieval error  to zero at mean square convergence of right side errors. As it is in all ill-posed 
problems, its accuracy could be determined only on the basis of numerical simulation. 
 
 Physical problems based on ill-posed Volterra-type equations 
 Physical problems related with integral equations are, as a rule, inverse problems. Some of 
them consist in the solution of Volterra equations, and could be considered in the described 
above formulation as ill-posed problems. Some examples are presented here. 
 

1.  Refraction inverse problem in a spherical symmetry medium [2,3]. 
a.  Limb-viewing geometry [2]. 
For limb-viewing measurements the refraction inverse problem can be expressed as the  

Volterra-type integral equation of the 1-st kind (the dependence of refraction ε on radial 
distance of ray perigee):  
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where p = nr, n0 = n(r0), p0 = n0r0,  r, r0 are radial distances, N = 106(n-1) is refraction index, 
n is refractive index.  

b.  Immersion geometry [3].  
The dependence of refraction on radial position (distance) of the source or receiver in the 

medium can be expressed as Volterra integral equation of the 2-nd kind: 
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where θ is the elevation angle of the ray at the source position. 

If one considers the equations (1) or (2) in the case, when their right side is given in the 
region  p1 ≤ p0 ≤ p2,  p2 <  pmax, the solution for the region p1 ≤ p ≤ pmax becomes an ill-
posed problem. Similar equations describe the radiometry inverse problems of limb-viewing 
and immersion remote sensing of planet atmospheres [4].   

 
2.  Diagnostics of the superconductive films in a strong electromagnetic field [5-6]. 

 The measured dependence of averaged over the conductor surface resistance on magnetic 
field amplitude in the case of one-dimensional distribution of magnetic field H in a 
rectangular cavity resonator is related with the true resistance dependence Rs(H) as 
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The inverse problem of Rs(H) retrieval in the range 0 ≤ Hm ≤ Hmax becomes ill-posed in real 
conditions, when the measurements region is limited at low magnetic field values, and there 
are measurements only in the range H2 ≤ Hm ≤ Hmax.  
 

3. Thermal history inverse problems. 
a.  Thermal conductivity equation for half-space. 
Let us consider the homogeneous half-space  z ≤ 0  with the constant parameters: thermal 

diffusivity coefficient a2. If we have boundary condition for temperature T(0,t) = T0(t), then 
the dynamics of the temperature distribution inside the half-space can be determined from 
thermal conductivity equation as a function of depth and time as follows: 
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The inverse problem consist of retrieval of the boundary condition T0(t) by measurements 
T(z,t). There are two possibilities: the first of them (Tikhonov’s [1]) is based on measurements 
of depth profile T(z) at time t0, and the second (considered here as ill-posed Volterra-type 
equation) is based on measurements T(t) at some arbitrary depth z0 in the range a ≤ t ≤ b. The 
retrieval in this, second, case should be found in the region [c,b], where c < a. For the solution 
the necessary condition is T0(t) ≡ 0 at t < c (otherwise, it will be unaccounted source of error).  

 
b. Thermal conductivity equation for space with the spherically symmetric source. 
If we have the homogeneous space r ≥ 0 with the boundary condition T(R,t) = T0(t) on the 

sphere r = R, the temperature evolution in the region r > R is determined by 
 

                        T r t T t
R r R

r a t
r R
a t

d
t

( , ) ( )
( )

( )
exp(

( )
( )

)=
−

−
−

−
−−∞

∫ 0 2 3

2

24 4π τ τ
τ                                    (5) 

 
The ill-posed Volterra-type equation for (5) is the same as for (4) - to retrieve the T0(R,t) in 
the range a ≤ t ≤ b  by  T(r0,t) at some arbitrary radial distance r0 in the region [c,b], c < a.   

 
c. Retrieval of temperature evolution of media by thermal emission dynamics. 

 More sophisticated inverse problems are based on simultaneous solution of thermal 
conductivity and thermal emission transfer equations [7]. The brightness temperature of 
upward thermal radio emission of half-space z ≤ 0 at wavelength λ is determined from 
emission transfer equation, assuming that the reflection on half-space interface is absent : 
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where γ(λ) is the absorption coefficient.   
 
The substitution of (4) into (6) gives [7]: 
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If the function Tb(t) is known in the whole region (-∞,b], the equation (7) has the exact 
solution [7]: 
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 Otherwise, if Tb(t) is known in some limited region [a,b], the problem of retrieval of T0(t) 
in the region [c,b], where c < a, is also the Volterra-type ill-posed problem. 
 For the sphere case (see item b), there are different possibilities to choose the beam 
geometry, which determines the form of emission transfer integral. The most simple equation 
corresponds to the case of radial directed (from sphere) measurements:  
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More common case, when a ray perigee radial distance r0 ≠ 0 (r0 > R), the radiobrightness can 
be expressed as  
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where R0 is the radial distance of the receiver. The ill-posed Volterra-type equations for (9) 
and (10) are the same as for (7). For the equation (10) there is also the possibility to formulate 
the limb-viewing inverse problems, similar with refraction inverse problems (see equations 
(1) and (2) ), using the dependence Tb(r0).     
 Let us consider the solution of equation (7) in detail as a typical example of ill-posed 
Volterra-type equations. If to introduce the time parameter Γ=1/(γa)2, which is a typical time 
of the heating of the medium at the skin-depth zs=1/γ, it is possible to rewrite (7) in simpler, 
dimensionless form, using dimensionless parameters r=t/ Γ, ρ=τ/Γ: 
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  To solve such a problem it is necessary to use additional (a priori) information about the 
exact solution. This information determines a regularization method. There are various 
approaches, but in the present paper Tikhonov’s method of generalized discrepancy is applied, 
which uses the common information about the exact solution as a function [1]. It is supposed 
in this method that the exact solution  belongs to the set of square-integrable functions with 
square-integrable derivatives. The results of numerical simulation give us the retrieval 
accuracy at various levels of the radiobrightness error. It appears possible to retrieve the 
function T0(ρ) in the range [c/Γ,b/Γ] by measurements Tb(r) in the range [a/Γ,b/Γ], c < a, up 
to values a - c  ≈ 2 ÷5 Γ at measurement accuracy about 1%. The main preference of 
Tikhonov’s method consist of the uniform convergence of the retrieval error  to zero at mean 
square convergence of measurement errors. As in all ill-posed problems, this convergence is 
slower than it is in well-posed problems. 
 The numerical algorithm of the Tickonov’s method (the same as in [6]) was applied to the 
retrieval of diurnal temperature dynamics of soil by its thermal radio emission evolution 
measurements [8]. The measurements have been carried out using radiometers at wavelengths 
0.8; 3; 9, and 13 cm under metallic screen (to eliminate the influence of reflection on interface 
air-soil). In the Fig.1 is shown an example of retrieval of the surface temperature in time 
interval from 15h (r = 0) to 12h20m (r = 8.25) next day by measurements of radiobrightness at 
wavelength 3 cm in time interval from 3h10m (after midnight) to 12h20m . The parameters 
values were: a2 = 0.001 cm2/s, γ = 0.33 cm-1, Γ = 2.55 h. So, a = 15h, b = 12h20m, c=3h10m. 
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Fig.1. 

 
 It is possible to see that the retrieval in the time interval t > a, where there are 
measurements Tb(t),  is very close to contact measured dynamics T0(t).  At c ≤ t ≤ a the 



accuracy of the surface temperature history retrieval reduces, but it appeared possible to 
retrieve the process of night surface cooling. It is clear that the problem is more difficult for 
retrieval of the thermal history than for retrieval of simultaneous surface temperature 
dynamics. 
 The retrieval of the surface temperature dynamics permit then to retrieve the temperature 
profile dynamics in the medium from the equation (4), and to calculate the thermal flux 
evolution [7].   
 
Conclusions 
 The results of the solution of various physical problems based on Volterra-type integral 
equation in considered here ill-posed formulation show that the domain of definition of the 
solution consist of two very different sub-ranges.  The first sub-region (which could be called 
«inner» ) coincides with the domain of definition of equations right side. The second (outer) 
sub-range is located outside the domain of definition of equations right side. The approximate 
solution in the outer region (as, for example, for the considered here in detail thermal history 
inverse problem) diverges to the exact one much more slowly than in the inner sub-region. In 
the inner sub-region the requirements to data accuracy could be very different in different 
physical problems, but always they are less than for outer sub-region. Moreover, in the outer 
sub-region the retrieval accuracy reduces with the distance to the boundary of inner sub-
region. Considered here new formulation solves the problem of influence of unknown non-
zero initial conditions on the solution of Volterra equations. No doubt, there are many 
possible applications of this approach, which remain unmentioned in this communication.         
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