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Introduction. The investigations of nonlinear electromagnetic properties of high-
temperature superconductors (HTS) in the last years offer raised interest in connection with 
prospects of HTS application in various microwave devices (resonators, filters, antennas etc.), 
with problems of quality control of these materials, with fundamental problems of physics of 
superconductors. Nonlinearity of HTS is usually characterized by dependence of a surface im-
pedance ZS  from the amplitude of a variable magnetic field H  on HTS surface, i.e. Z HS ( ) . 
These dependence is determined by using of microwave resonators of various designs [1-5]. 
Measuring parameters are: nonlinear broadening of the frequency response ∆f B  and the reso-
nant frequency shift ∆f0 . The algebraic equations which connect ∆ ∆f fB , 0  with 
R H Z HS S( ) Re ( ),=  X H Z HS S( ) Im ( )=  are in use. For all resonators types there is a strong 
inhomogeneity of a field H  distribution on a HTS surface. In the given work it is shown that 
HTS nonlinearity and fields inhomogeneity leads to the essential errors of convenient tech-
niques, and a new approach to a problem of diagnostics of nonlinear microwave properties of 
HTS is advanced. 

The integral equations. The techniques, used for determination of Z HS ( ) , are based 
on the next equation: 

                        ∆ ∆ ∆f f i f i W H Z d rB S
S

= + = ∫0
2 22 8( ) ( )π   ,   (1) 

where W  is the energy, stored into the resonator, and the integration is made on a HTS sur-
face. In the nonlinear resonator the nonuniform field structure leads to inhomogeneous distri-
bution of Z HS ( )  on a HTS surface. In this case we obtain from (1) 

∆f i G ZS= < >( )2   ,     (2) 

where G W H d rS= ∫( )1 4 2 2π  - geometrical factor, which is calculated for each particular 

resonator or is measured by calibration, 

< >= ∫ ∫Z H Z H d r H d rS S
S S

2 2 2 2( )     (3) 

averaged surface impedance. Thus, the use of the equation (2), as it is done in [1-5], yelds 
< >ZS  rather than  ZS , which largely reduces the value of obtained results, since < >ZS   
depends not only on properties of HTS material, but also on the resonators type and the ex-
cited  mode. 

We shall consider, that the resonator contains one HTS film as a conducting wall, which 
dependence Z HS ( )  is the sought-for parameter. The H  field structure on a HTS surface near 
resonant frequency is determined by own function of the appropriate mode Φ( )rr : 

H r H rm( ) ( )r r= Φ   ,      (4) 

                                                           
1 This work was supported by RFBR under grant 96-02-16997 and by Russian State Program on Physics of Con-
densed Matters under grant 96129. 
 



where Hm  is the maximum value of H  ( Φ  is normalized so that Φmax = 1).  The field Hm  
of the nonlinear resonator for each value of the input power is calculated on the basis of well 
known techniques (for example, for the microstrip resonator, see [6]). Passing in (3) from in-
tegration on coordinate variable to integration on H , with the account (4), we obtaine 

< >= ∫Z H K H H Z H dHS m S

Hm

( ) ( , ) ( )
0

  ,    (5) 

where K H Hm( , )  is the kernel of the integral equation, which depends on the resonator type 

and the exited mode ( K H H dHm
Hm ( , ) =∫ 10 ). We have received the expressions for 

K H Hm( , )  for different resonators types: confocal, microstrip, cavity, dielectric. 
Using (5), we have calculated a relative excess  R HS ( )  over < >R HS ( )  for various 

types of resonators and for typical dependencies R HS ( ) , observable in experiments [1-5]. We 
have received, that the use of the equation (2) gives underestimated value of R HS ( )  in 1.3-
1.7 times less for cavity-, in 2-3 times lessfor confocal-, in 4.5-7 times less for microstrip 
resonators.  

Method of solution of the inverse problem. The method offered us consists in meas-
urement of < >ZS  by the HTS resonator using the formula (2) at several input powers. Then 
Z HS ( )  is defined by solution equation (5).  Equation (5) is the integral equation of Volterra 
of the 1-st kind, whose solution is an ill-posed inverse problem.  In the given work the Tik-
honov method [7] was applied for solution of (5). We shall rewrite the equation (5) in the op-
erator form                               $KR Rm= δ   ,       (6) 

where Rm
δ  - vector of experimental datum, received with some tool error. In the Tikhonov 

method the approached solution is searched by minimization of functional 

M R KR R Rm L W
α δ α( ) $= − +

2 2
1

2 2   ,     (7) 

where f l2

2  is the norm of function f  in space L2   of square integrable functions, and 

f W2
1

2  - norm of function f  in the space W2
1  of square integrable functions together with 

their derivatives.  The problem of minimization of functional  (7) after appropriate discretiza-
tion was solved by the method of conjugate gradients [8]. Smoothing of the solution received 
from (7) is adjusted by parameter α , which, as it is shown in [7], is connected with an inte-
grated measure of an inaccuracy of experimental  data and is sought as the root of the nonlin-
ear algebraic equation 

                                         ρ α δα δ( ) $= − −KR Rm L2
2 2  ,     (8) 

where Rα  is the solution of (7). 
Parameter of an effective error δ  in (8) includes all errors of measurements and interpre-

tations. Thus, in a used method the smoothing of the solution is determined by an error meas-
ure δ . At high measurements accuracy, the error δ  reduces, and, hence, there is less smooth-
ing in the obtained solution, i.e. the details of Z HS ( )  can be reconstructed. 

Results of numerical modelling. The investigation of opportunities of retrieval is car-
ried out on the basis of numerical simulation for typical R HS ( )  and limits of tool errors. We 



have used the expression for K H Hm( , )  in (5) obtained for a rectangular cavity resonator and 
the power field dependence for RS , which is met more often in practice. The modeling of re-
construction procedure was done in the following closed circuit. For the given initial function 
R HS ( )  exact dependence < >R HS m( )  was calculated from (5), for which a random error 
with the given rms δRm  was added in discrete points m M= 1 2, ... , simulating the measure-
ments errors. Received thus "data of measurements" were used for solution of the inverse 
problem and the retrieved dependencies were compared with the initial one. For estimation of 
the efficiency of the Tikhonov method equation (5) was solved also by the method of the di-
rect inversion, i.e. by solving a numerical analogue of the integral equation (5), which after 
appropriate discretization becomes a linear system of algebraic equations. 

The results of numerical modeling are presented in Fig.1,2. In Fig.1 one can see an exam-
ple of retrieval. In Fig.2 the normalized dependencies of an integral measure of an inaccuracy 

δ σR H H dHR
H

= − ∫[ ( ) ]max
max1 2 1 2

0
 on a number of experimental points M are shown.  It was 

obtained from the results of numerical simulation that the Tikhonov method provides qualita-
tive reconstruction at δR mOhmm ≤ 0 02. , whereas the direct inversion - only at errors 
δR mOhmm ≤ 0 005. ,  close to extreme values, achievable for the state-of-art measurement 
techniques. We emphasize the existence of optimum value M , at which the error of recon-
struction is minimum (Fig.2), and this minimum for the Tikhonov method corresponds to a 
much smaller error than for a method of the direct inversion, and at smaller values of M . 

Conclusions. The method offered here is based on the theory of the solution of ill-
posed inverse problems for Z HS ( ) , which allows to take into account the inhomogenneous 
structure of an electromagnetic field in the resonators.  
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