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The scanning tomography method is developed for electromagnetic sounding of a 3D structure of an
inhomogeneous dielectric half-space. It is shown that known methods of physical diagnostics are suitable
for this tomography with the depth of analysis from nanometers at optical frequencies up to several
kilometers at ultralow frequencies. The areas of application include nanophysics, biological and medical
diagnostics, subsurface remote sensing in geophysics and geology, etc. This approach is realized in the
microwave scanning tomography of living tissues where a subwavelength resolution is achieved.
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By now, various kinds of computer tomography are
widely in use. The general approach to this problem is
based on Radon’s transform [1] and methods of ill-posed
problem solutions [2]. The method of the near-field scan-
ning tomography (NST), proposed in this Letter, uses data
of the 2D scanning of a probe along the plane interface of
an absorbing dielectric half-space (z � 0) with a 3D in-
homogeneous region dependent on a parameter of the
received signal that determines the effective depth of its
formation (the depth-of-formation parameter).

Similar mathematical ideas have been realized in the
near-field optics in [3–8] to obtain the 3D structure of
dielectric susceptibility of samples in the free space that
are exposed into single evanescent plane waves launched at
the total internal reflection of rays in prisms or semi-
cylinders. These resources cover a variety of measurement
modalities including total-internal-reflection tomography
based on scattered field measurements and scanning near-
field optical microscopy (SNOM) probe measurements of
the scattered field intensity in the collection mode. An
experimental demonstration of this approach is given for
the case of 2D samples in [7].

It should be mentioned that when scanning a half-space
from an upper half-space with a higher refractivity, ap-
proaches developed in [3–8] can also be used in NST. But
in the case of NST that uses measurements of a dielectric
half-space from the vacuum, it is impossible to launch
single evanescent waves because of the absence of the total
internal reflection. To overcome this problem, the property
of a small-aperture source (positioned in the near-field
zone above the surface) to generate a spectrum of evanes-
cent waves into a half-space is used in the proposed to-
mography based on SNOM measurements in the illumi-
nation mode. But, unlike the SNOM collection mode con-
sidered in [3–8], the kernel of the corresponding one-
dimensional Fredholm integral equation depends on the
source (probe) parameters such as its sizes and the altitude
above the surface, and these parameters can be used as the
depth-of-formation parameter instead of wave vector com-
ponents in [3–8].

This dependence of the effective depth of formation of
the received signal on the small-aperture probe size and on
its altitude above the interface has been discovered recently
in the thermal radio emission of an absorbing dielectric
medium [9,10], and this dependence is used here in the
microwave tomography of the subsurface temperature and
permittivity. For the tomography of an absorbing half-
space with the frequency-dependent skin depth, the fre-
quency can also be considered as the depth-of-formation
parameter.

It is shown here that various known methods of physical
diagnostics (SNOM, radiometry, insertion impedance di-
agnostics, magnetotelluric sounding) can be transformed
into NST methods, and, as the main result, the method of
microwave NST is demonstrated to retrieve the 3D dielec-
tric structure of living tissues with a subwavelength
resolution.

Theory.—Let us consider a scattering region with the
complex permittivity "�r; !� � "0�!� � "1�r; !� (! is the
cyclic frequency), that is embedded in a half-space z � 0
with " � "0�!�. In the upper half-space " � 1 is assumed,
but all the results are valid for any other constant value of
permittivity. For the time dependence exp�i!t�, the refer-
ence (unperturbed) field E0�r� is determined by the known
Green tensor (that includes near-field components):

 E 0�r� �
1

i!

Z
V

G
$

�r� r0�jp�r0�dr0; (1)

where jp�r� is the current distribution in the source. Using
the plane waves’ decomposition of (1), it is possible to
obtain the refracted field E0�r� at z � 0. In the presence of
the scattering region, the electric field E�r� is obtained in
frameworks of perturbation theory from

 E �r� � E0�r� �
1

4�"0

Z
V

R
$

�r; r0�E0�r0�dr0: (2)

The resolvent R is determined by known Neumann series
using "1 and the proper Green function. Equations (1) and
(2) solve the direct problem of electrodynamics. An effec-
tive approach to this direct problem, based on the solution
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of a Dyson’s equation for the resolvent, was developed in
[11]. Unfortunately, the solution of the inverse problem for
the nonlinear integral equation (2) with a 6D kernel is a
very complicated problem. For this reason, in problems
where scattered fields are in use, our consideration is based
on the Born approximation ("1�~r� � "0, where E�r� �
E0�r� � E1�r� and scattered fields’ components are deter-
mined as
 

E1�r� �
1

4�"0

Z
V
"1�r0�G

$

E�r� r0�E0�r0�dr0;

H1�r� �
i!

4�c

Z
V
"1�r0�G

$

H�r� r0�E0�r0�dr0:
(3)

Using the plane waves’ decomposition in (3) at z � 0, it
is possible to obtain scattered fields in the upper half-space
where they can be measured. At the fixed position of the
source of unperturbed field, Eqs. (3) are not, in general,
simple convolution equations over lateral coordinates of a
receiver, but they are systems of 3 convolution equations

(because G
$

is a tensor), so it is not easy to use scattered
fields (or intensities) in the proposed NST. But there are
ways out. First, the reference field in a medium can be a
plane wave E0�r� � E0 exp�ikr� that has no fixed source.
Using the known property of the Fourier transform of a
product with an exponent, one has from (3) the spectrum of
the scattered field:

 E 1��x; �y; z� �
�
"0

Z 0

�1
"1��x � kx; �y � ky; z

0�G
$

E��x; �y; z; z
0�E0 exp�	i

�����������������
k2 � k2

?

q
z0�dz0; (4)

where k2 � �!=c�2"0, the sign in exp�� should correspond
to extinction. One can see in (4) the effect of the shift of the
permittivity spectrum relative to the field spectrum that
makes it possible to realize the subwavelength resolution at
far-field measurements using in the sounding single eva-
nescent plane waves (at the value of k2

? � k2
x � k2

y > jkj2)
just like in methods found in [3–8].

There is also the second possibility of NST that uses a
near-field source itself in 2D lateral scanning, as, for
example, in the SNOM illumination mode. In such cases,
it appears possible to express field parameters in the form
of 2D convolution equations over lateral coordinates of the
probe and to use these equations in NST.

Low frequency NST tomography.—The simplest appli-
cation of NST can be based on the ultralow frequency
electromagnetic sounding [9,12] of the earth crust up to
several kilometers in depth. At low frequencies " � "0 �
i"00 � �i4��=!, where � is conductivity, and the ap-
proximation of Leontovich is valid. When, for example,
2D measurements of the y component of the magnetic field
are available at the surface level (z � 0), one has from (3):
 

H1y��x; �y; !; 0� � H0y
�1� i�!�

4c2

Z 0

�1
�1��x; �y; z

0�


 exp
�
z0

�
� i

z0

�

�


 exp�	i
������������������
k2 � �2

?

q
z0�dz0; (5)

where � � c=
����������������
2�!�0

p
is the skin depth, and �1 is the

lateral spectrum of conductivity variations.
To retrieve depth profiles �1��x; �y; z� from the one-

dimensional Fredholm integral equation of the first kind
(5) with the frequency as the depth-of-formation parame-
ter, the mathematically consistent algorithm is developed
here that is based on Tikhonov’s method of generalized
discrepancy [12]. The regularization parameter determined
by the integral error of lateral spectrum is derived from the
known integral error of the measured signal using

Plansherel’s theorem (the key point). Finally, the desired
3D structure of the conductivity �1�x; y; z� is obtained by
2D inverse Fourier transform of the retrieved �1��x; �y; z�.

NST tomography in SNOM.—The NST based on the
SNOM collection mode with the sample in a half-space
can be modified to the measurements scheme [5]. It is also
possible to develop NST methods based on SNOM in the
illumination mode, where a near-surface subwavelength
(electrically small) source is used for 2D scanning, and
measured parameters of scattered field can be expressed in
the form of a 2D convolution equation. Typically, the
received signal is collected in the far zone behind the
studied region, and it can be expressed as S�r1� �RR
c=8�Re�E H��zdxdy, where r1 is the probe position.

The expression for variations of the signal at the probe
scanning S1�r1��

RR
c=16���E0xH

�
1y�E0yH

�
1x�E1xH

�
0y�

E1yH�0x��c:c:�dxdy appears to be a convolution equation
over lateral coordinates of the probe, so its 2D Fourier
transform leads to the one-dimensional integral expression.
This equation can be reduced to the Fredholm integral
equation of the first kind in two cases: when "1 � "01 or
"1 � �i"

00
1 . For example, if "1 � "01,

 

S1�kx; ky; z1; D� �
Z 0

�1
"01�kx; ky; z

0�


 K�jp; kx; ky; "0; z1; D; z0�dz0; (6)

and (6) can be solved to obtain "01�x; y; z� just as �1 in
Eq. (5). The kernelK of (6) depends on depth-of-formation
parameters: a probe size parameter D and the probe alti-
tude z1.

Microwave NST tomography.—Passive (radiometry)
microwave measurements have been in use in the one-
dimensional temperature sounding (profiling) in various
media (see [9]). From the general equation [9] for the
measured effective radio brightness, assuming " � const
at z � 0, one obtains the exact expression for radio bright-
ness variations TB1�x; y;D�:
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 TB1�x1; y1; D� �
ZZ

x;y

Z 0

�1
T1�x

0; y0; z0�
jE0�x0 � x1; y0 � y1; z0; z1�j

2RR
x;y

R
0
�1 jE0�x0 � x1; y0 � y1; z0; z1�j

2dx0dy0dz0
dx0dy0dz0; (7)

where T1�r� are temperature variations, E0�r0 � r1� is the
field of the receiver antenna (attached to the point r1) when
it works in the active mode, D is a depth-of-formation
parameter (frequency, sizes of the antenna aperture, or its
altitude z1). At near-field measurements, plane resonant
antennas [9,10] are in use that are matched to achieve near-
zero reflection conditions. The master equation (exact) is
obtained by 2D Fourier transform of (7)

 TB1�kx;ky;D� �
Z 0

�1
T1�kx;ky; z0�K�kx;ky;D; z0; �dz0 (8)

and processed further in the same way as in the above-
considered cases to obtain T1�x; y; z�.

In the active (impedance) microwave sounding of media
[9,13], variations of the signal reflected from resonant an-
tennas are related to insertion impedance variations that are
caused by variations of the subsurface permittivity. The
variations R1 of the reflection coefficient R can be mea-
sured, and, at the properly chosen frequency, they are pro-
portional to variations of the antenna reactance [13]. Ne-
glecting scattered fields and introducing the effective per-
mittivity "eff

1 � ��"
0=�R�R1 as a product of the calibra-

tion constant and R1, one obtains the desired expression:

 "eff
1 �x1; y1; D� �

ZZ
x;y

Z 0

�1
"01�x

0; y0; z0�
jE0�x0 � x1; y0 � y1; z0; z1�j

2RR
x;y

R
0
�1 jE0�x

0 � x1; y
0 � y1; z

0; z1�j
2dx0dy0dz0

dx0dy0dz0: (9)

The 2D Fourier transform of (9) leads to the Fredholm
integral equation for NST:

 "eff
1 ��x; �y; D� �

Z 0

�1
"01��x; �y; z

0�K��x; �y; D; z0�dz0:

(10)

It is easily seen that the kernel K in Eq. (10) is the same as
the kernel K in Eq. (8) derived above for the passive
temperature tomography. If a plane antenna is placed in
the x-y plane at the altitude z � 0, the reference field for
the x component of current’s distribution over its aperture
jp�x; y; z� � jpx �x; y���z� z1� is obtained from Eq. (1) as

 

E0�x� x1; y� y1; z; z1� � �
1

2!

Z 1
�1

Z 1
�1
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�����������������
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1
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2
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2
0T?�; fE0
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�����������������
k2

0� �
2
?

q
Tjj; (11)

k0 � !=c, Tjj, T? are Fresnel coefficients, jPx ��x; �y� is
the lateral spectrum of the current. Using (11) for a homo-
geneous current distribution jpx � const in the rectangle
jx� x1j< Lx=2, jy� y1j< Ly=2 with the spectrum
jpx ��x; �y� � jx sin�xLx sin�yLy=4�2�x�y, typical for

electrically small plane dipoles, the kernel K�kx; ky; z� of
(8) and (10) is obtained as the exact expression
K�kx; ky; z; Lx; Ly; z1� that depends on sizes Lx; Ly of a
plane antenna and on its height z1 above the medium
surface. These parameters and the frequency of measure-

 

FIG. 1 (color online). Scheme of microwave impedance scan-
ning.

 

FIG. 2 (color online). Set of near-field resonant antennas.
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ments ! can be used as the depth-of-formation parameter
D in passive and active microwave NST.

Microwave NST of living tissues.—The region of the hu-
man hip surface shown in Fig. 1 has been scanned at the
surface level (z1 � 0) using near-field dipole resonant an-
tennas (see Fig. 2) at the frequency 1.15 GHz. The total
length of dipoles was used asD in (10); i.e.D�Lx�Ly�
0:5, 1, 2, 3, and 4 cm. The effective depth of the signal
formation deff�D� � j

R
0
�1 z

RR
K�x; y; z; D�dxdy dzj is in-

creased with D from 0.2 up to about 2 cm. The one-
dimensional Fredholm integral equation of the first kind
(10) is solved by Tikhonov’s method, and the 2D inverse
Fourier transform of the obtained profile of lateral spec-

trum components gives us the desired solution of this
tomography problem. [We have operated within the stan-
dards of the Helsinki Declaration of the World Medical
Associations. The applied (and monitored) power was
lower than that of a cell phone signal and was judged to
impose no measurable risk. The subject knew what was
being done and was informed of the risk level and volun-
tarily agreed to participate in measurements and be ex-
posed to the above-mentioned microwave signal.]

In Fig. 3 results of scanning of the reflection coefficient
variations R1�x; y� at y � 0 along the x direction from the
knee (the depth of the fat is increasing in this direction) are
shown for all antennas in Fig. 2.

The tomography of the real part of permittivity "0�x; y; z�
(sectional view y � 0) in living tissues in Fig. 4 is obtained
with a subwavelength resolution (sizes of the tomogram
are less than the wavelength � � 26:1 cm). It is clearly
seen from Fig. 4 that the hypodermic permittivity de-
creases sharply from the knee in the x direction from values
typical for muscle and bone tissues, to the values typical
for the fat. Results are in quite reasonable correspondence
with the real structure of living tissues.
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FIG. 3. Variations of the reflection coefficient.

 

FIG. 4 (color online). Tomography of "0�x; y; z� of living tis-
sues.
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