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Decisive success has been achieved in developing the subsurface near-field scanning tomography that

overcomes the Rayleigh diffraction limit of a resolution. It is related to the transformation of the

multifrequency inverse scattering problem to that for a complex-valued synthesized pulse (pseudopulse).

It leads to the integral equation that has maxima in the depth dependence of its kernel and, hence, to the

much better depth resolution of tomography. Moreover, the noise related to surface scattering is mainly

suppressed in such an approach. This idea is realized here in the microwave subsurface tomography of 3D

inhomogeneous dielectric structures. For homogeneous dielectric targets, this approach is applied to

obtain holography images of their shape.
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The general approach to various methods of computer
tomography is based on Radon’s transform [1] and the
theory of ill-posed problems [2]. The proposed method
follows the idea of near-field scanning tomography [3] to
its logical end using the possibility of overcoming existing
problems by the transformation of the multifrequency in-
verse scattering problem to that in the time domain. Near-
field tomography is based on the property of small-aperture
probes to generate or receive evanescent waves, which
makes it possible to observe a sounded subsurface object
with a subwavelength resolution. This approach is the only
waywhen it is impossible to use higher frequencies (or short
pulses)—technically, or, for example, because of the extinc-
tion increase.To obtain tomograms, 2Dmeasurements along
the interface of the sounded region should be carried out
while depending on a third parameter that determines the
depth sensitivity (such as signal frequency, probe altitude, or
its size). The dependence of the depth sensitivity in the near
zone on the probe size and altitude above the interface was
first discovered in the thermal radio emission of dielectric
media and applied in tomography experiments [3–5].

The statement of 3D inverse scattering problems is
typically based on the solution of 3D integral equations
of the 1st kind. It leads to limitations of the grid size used at
calculations and, hence, to limitations of the achievable
resolution. In some of proposed methods (radiometry, im-
pedance, low-frequency sounding of the Earth’s crust [3],
total-internal-reflection tomography [6,7], multifrequency
optics scheme [8] that considers the tip illuminating a
sample in free space or the tip illuminated by plane waves
together with a sample above the substrate), problems are
reduced to one-dimensional integral equations by a 2D
inverse Fourier transform over transversal coordinates.

This approach has been developed by us for the scanning
tomography of inhomogeneities in arbitrary multilayer
media using the proposed method of data acquisition [9]:
It involves an analysis of the 2D lateral distribution of the

scattered field measured by scanning at the unchanging
source-receiver relative position. It enables us to reduce
this problem to the solution of the one-dimensional integral
equation in the Born approximation. Moreover, an iterative
algorithm was proposed to obtain corrections beyond this
approximation. Necessary Green functions have been ob-
tained using the plane wave decomposition of fields. The
multifrequency and multilevel scheme of measurements
have been suggested in this paper, and, to retrieve 3D
complex-valued permittivity distributions from the solu-
tion of Fredholm integral equations of the 1st kind, algo-
rithms based on the generalized discrepancy principle in
the complex Hilbert space W1

2 have been worked out and
studied in the numerical simulation.
This theory has been applied by us to develop the multi-

frequency microwave tomography of subsurface dielectric
inhomogeneities [10]. However, this method, as well as
others, proposed in the above-cited papers, remained far
from real applications. The main problem consisted of high
demands to accuracy of measured data, whereas, in most
cases, the scattering by surface inhomogeneities leads to
noise level so high that it is difficult to discern the contri-
bution of subsurface targets in the signal. In this Letter, to
overcome existing difficulties, we propose the new ap-
proach based on the transformation of the multifrequency
inverse scattering problem to that for a synthesized pulse.
Theory.—Let us consider a scattering region with the

complex permittivity "ðrÞ ¼ "0 þ "1ðrÞ that is embedded
in a half space z � 0 with " ¼ "0 (see Fig. 1). The total
field at the frequency ! is a sum of probing and scattered
field components Eðx; y;!Þ ¼ E0ðx; y;!Þ þ E1ðx; y;!Þ.
For the scheme of measurements with the fixed source-
receiver vector �r, when the structure of the probing field is
invariable relative to the receiver position, it is possible to
express the k-space spectrum (2D inverse Fourier trans-
form over x and y) of the scattered field in frameworks of
the Born approximation [9]:
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where Glk
ji are k-space components of Green tensors; ji is

the k-space source current distribution (for brevity we use
same notations for k-space representations). Variations of
complex amplitudes of the received signal s are expressed
by the convolution of the instrument function F of the
receiver and the scattered field E1:

sðrrÞ ¼
Z

E1ðr0ÞFðxr � x0; yr � y0; zr; z0Þdx0dy0dz0; (2)

where rr is the vector determining the receiver position.
From (1) and (2), the transversal spectrum of measured

signal variations is obtained as

sðkx; ky; !Þ ¼
Z
z0
"1ðkx; ky; z0ÞKðkx; ky; z0; !Þdz0: (3)

This equation was used in our algorithm of the microwave
subsurface tomography [10] but it was difficult to recog-
nize sounded subsurface objects on the measured image of
sðx; y;!Þ against the noise produced by the surface scat-
tering. However, we have found [11] that it is possible to
obtain much better images of subsurface targets, using the
transformation of multifrequency data to the synthesized
pulse

sreðx; y; tÞ ¼ Re
Z 1

0
sðx; y;!Þ expði!tÞd! (4)

that can be represented by its dependence on the effective
depth parameter zs accordingly sreðx; y; zsÞ ¼ sreðx; y; t ¼
zs Re

ffiffiffiffiffi
"0

p
=cÞ; the integration is, of course, available over

the frequency band �! (a similar synthesis has been used
in [12] for far-field multifrequency measurements).
Subsurface inhomogeneities were clearly seen in near-field
images of sreðx; y; zsÞ at some values of zs that grow with

the depth of targets. Also, the strong maximum related to
scattering by surface inhomogeneities was seen. It suggests
that we make similar transformations in Eq. (3):

sðkx; ky; tÞ ¼
Z 1

0
sðkx; ky; !Þ expði!tÞd!; (5)

where sðkx; ky; zsÞ ¼ sðkx; ky; t ¼ zs Re
ffiffiffiffiffi
"0

p
=cÞ, which

leads to a new equation that relates the complex permit-
tivity spectrum to the complex-valued synthesized pulse of
the signal lateral spectrum (we called it pseudopulse for
brevity):

sðkx; ky; zsÞ ¼
Z
z0
"1ðkx; ky; z0ÞKðkx; ky; z0; zsÞdz0; (6)

Kðkx; ky; z0; zsÞ ¼ Kðkx; ky; z0; t ¼ zs Re
ffiffiffiffiffi
"0

p
=cÞ, Kðkx; ky;

z0; tÞ ¼ R1
0 Kðkx; ky; z0; !Þ expði!tÞd!.

The kernel of the integral in Eq. (6) is formed (after
summation over i; j and integration over �x; �y) by func-

tions that can be expressed as
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(7)

where k0 ¼ !=c. The integrand in (7) describes k-space
transformations at the scattering. Depending on frequency,
the terms of the exponent (the first one related to the
sounding field, and the second one related to the scattered
field) can correspond to evanescent [if k20 Re"0 < �2

x þ �2
y,

k20 Re"0 < ð�x þ kxÞ2 þ ð�y þ kyÞ2] or to propagating

waves. These functions have maxima at some depths jz0j
that become deeper with jzsj. Contributions of ‘‘evanescent-
to evanescent’’ transformations typically form these
maxima near the surface whereas mixed transformations
shift maxima deeper. At that, transformations of propagat-
ing waves to evanescent components provide a subwave-
length resolution to deeper targets than ‘‘interevanescent’’
transformations. ‘‘Interpropagating’’ transformations shift
maxima yet deeper. Such a formation leads to the depth
dependence of Kðkx; ky; z0; zsÞ with maxima that can ex-

plain the observed depth selectivity and resolution of
pseudopulse images. It can also explain the increase of
the near-field response along the z direction that has been
observed in [13]. It is well known [5] that kernels with
maxima provide better solution results in comparison with
the exponential kernel of the initial equation (3).
To solve the Fredholm integral equation (6), the algo-

rithm based on the generalized discrepancy principle in the
complex Hilbert space W1

2 [9] has been applied here to
retrieve tomography images of subsurface inhomogene-
ities with the complex-valued distribution of permittivity.
From the solution of (6), the desired 3D structure of

FIG. 1 (color online). Scheme of measurements.
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permittivity (tomogram) is obtained by the 2D inverse
Fourier transform:

"1ðx;y;zÞ¼
ZZ

"1ð�x;�y;zÞexpði�xxþ i�yyÞd�xd�y: (8)

In practice, subsurface targets mostly have a homoge-
neous internal structure. When it is known a priori that the
permittivity of a target "01 ¼ const, the tomography prob-

lem can be reduced to the problem of target shape retrieval,
i.e., to the problem of computer holography. For that, the
k-space permittivity spectrum can be written as a Fourier
transform with finite limits:

"1ðkx; ky; zÞ ¼ 1

4�2

Z y2

y1

Z x2ðyÞ

x1ðyÞ
"01e

�ikxx�ikyydxdy

¼ "01
4�2

Z y2

y1

expð�ikyyÞ 1

ikx

� ðe�ikxx1ðyÞ � e�ikxx2ðyÞÞdy: (9)

Then, making the inverse Fourier transform of (9) over ky,

we obtain the complex-value transcendent equation:

"1ðkx; y0; zÞ ¼
Z 1

�1
"1ðkx; ky; zÞ expðikyy0Þdky

¼ "01
2�ikx

ðe�ikxx1ðy0;zÞ � e�ikxx2ðy0;zÞÞ; (10)

which is equivalent to the system of two real equations.
The desired shape of the target expressed by two functions
x1ðy; zÞ, x2ðy; zÞ is obtained (after change y0 ! y) from this
equation, using the solution "1ðkx; ky; zÞ of (6). It should be
mentioned that this equation is overdetermined: It can be
solved at each value of kx.

There is a quite simple way to determine the kernel
K in (6) from measurements of weakly scattering thin
test samples with a known shape and permittivity placed
at different depths z0 throughout the sounded region.
Corresponding lateral spectra are expressed as
"1ðkx; ky; z0Þ ¼ "tðkx; kyÞ�ðz0 � z0Þ. Then the kernel is

easily obtained as Kðkx; ky; z0; zsÞ ¼ sðkx; ky; zs; z0Þ=
"tðkx; kyÞ. If test samples are not weakly scattering, the

kernel differs from that in the Born approximation, but it is
yet possible to use this calibration for the tomography of
objects with a similar level of scattering with a quite good
result.

Experiment.—Applying the described approach in ex-
periments with various targets, we have retrieved their
tomography images. Measurements of signal complex am-
plitudes for 801 frequencies in the region of 1.7–7.0 GHz
obtained by 2D lateral scanning have been used in the
analysis. The source-receiver system based on the vector
network analyzer Agilent E5071B includes two identical
transmitting and receiving antennas placed in the y direc-
tion. They were scanning together in the rectangle x-y area
with sizes 30� 20 cm above the buried targets.

To obtain a subwavelength resolution, the k-space spec-
trum of the received signal should be broad enough to
include evanescent waves. For bow-tie transmitting and
receiving antennas (with the length of arms at 3.8 cm and
a width of 5.4 cm, placed in the y direction; the fixed
distance between the centers of antennas was �y ¼
7:5 cm), used in the measurements, current distributions
on the antenna and their spatial spectra are shown in Fig. 2
for the lowest and highest frequencies of the analysis.
As seen in Figs. 2(a) and 2(b), current distributions are

quite sharply localized at the center of the antenna’s surface,
so it has a very broad spatial spectrum [shown in Figs. 2(c)
and 2(d)] where components with kx, ky > 2�=� dominate,

and, according to (1), they form a broad near-field spectrum
of the signal. It makes it possible to realize the subwave-
length resolution of targets in the proposed tomography.
Theoretically, the depth of such subwavelength tomography
is not limited—restrictions are related only to the achievable
sensitivity. It has been demonstrated in our numerical simu-
lation for deeply buried small targets [9]. But, in practice, at
a fixed sensitivity, because evanescent components fade
with depth, the accuracy of tomography decreases with the
target depth whereas its resolution tends gradually toward
Rayleigh limitations. Estimations show that, in our case, the
sensitivity to inhomogeneities with sizes of about 2 cm
remains at depths comparable to the longest wavelength in
the analysis (9 cm in the medium). It should also be noted
that the accuracy of retrieval depends on depth as well as on

FIG. 2. (a), (b) Current distributions on the bow-tie antenna at
1.7 GHz and 7 GHz. (b), (c) Lateral spectra of these current
distributions.

FIG. 3 (color online). (a) Signal spectrum measured above the
target (x ¼ 15 cm, y ¼ 10 cm), f ¼ !=2�. (b) Corresponding
pseudopulse amplitude vs effective depth.
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the object itself, so it should be obtained in the case study—
from numerical or real experiments.

In Fig. 3, the signal spectrum is shown with the corre-
sponding pseudopulse versus the effective depth for a
parallelepiped foam sample with sizes 4� 3� 2 cm
buried in a sandy ground at depth z ¼ �4 cm.

As seen in Fig. 3(a), the band of the analysis includes the
main part of scattering spectra. The scattering at lower
frequencies falls drastically for centimeter-size inhomoge-
neities; at higher frequencies the signal falls with the
increase of absorption. So, it is difficult to achieve a
good resolution by a short-pulse sounding at millimeter
waves. In Fig. 3(b) one can see the near-surface strong
maximum in the pseudopulse amplitude related to the
surface scattering at zs >�1:5 cm, and the distribution
related to the target scattering at zs <�1:5 cm. It enables
us to determine the proper range of analysis at the solution
of Eq. (6). In Figs. 4 and 5, 2D images of the measured
signal and pseudopulse are shown.

The images demonstrate that the noise related to the
surface scattering makes it difficult to discern the sounded
sample in images of the measured signal at separated
frequencies (Fig. 4), but this noise is much suppressed in
images of the pseudopulse (Fig. 5) so that the buried target
is clearly seen. It is important to note that the surface of the
scanned region was quite smooth, so that such a strong
effect of the surface scattering can be explained as the
transformation of spatial frequencies at multiple scattering,
when small-scale surface inhomogeneities disposed in the
strong near field of an antenna produce observed strong
large-scale field variations of the signal at each frequency.
The discovered possibility of selecting the target scattering
from the surface-related noise makes it possible to use
stronger signals to detect backscattering from deeper targets.

In Fig. 6, tomography results obtained from the solution
of (6) are given. Pseudopulse data at 50 values in the region
�2 � zs � �9 cm have been used in the analysis to re-
trieve the target permittivity on the 3D grid with the linear
size of 0.25 cm. The corresponding range of the analysis in
k-space was�8� � kx;y � 8� cm�1 (about the same as in

Fig. 2). To demonstrate the role of evanescent waves,

k-space data with truncated near-field components (at each
frequency) have also been used in the analysis. The tomog-
raphy result with such a truncation is shown in Fig. 6(a) to
compare with the retrieval without the truncation in
Fig. 6(b) (permittivity images in a horizontal section). The
tomography image in a vertical section is shown in Fig. 6(c).
As it is possible to see, the tomography image in

Fig. 6(a) looks like a broad blurred spot, whereas the retrieval
with near-field components [Figs. 6(b) and 6(c)] is in a good
correspondence with parameters of the buried target.
As was mentioned above, it is possible to determine the

shape of homogeneous targets using the retrieved k-space
permittivity in the solution of (10). Such holography
images obtained as functions x1ðy; zÞ, x2ðy; zÞ for the case
shown in Fig. 6 are presented in Fig. 7.
Deviations of retrieved functions from the real shape of

the target surface are less than 0.5 cm. Taking into account
signal wavelengths in the medium (2.2–9 cm), it demon-
strates a subwavelength resolution of the proposed method.
In fact, the developed tomography method is suitable not

only for simple homogeneous targets, but also for more
complicated distributions of the complex permittivity. To
demonstrate these possibilities, a continuous 3D inhomo-
geneity of complex permittivity produced by the buried
sample of melting ice has been studied. For such a strong
inhomogeneity, we use the correction of the Born approxi-
mation proposed in [9] to take into account the secondary
scattering in the iterative algorithm:

sðnÞðkx; ky; zsÞ ¼ sðkx; ky; zsÞ ��sð"ðn�1Þ
1 ; kx; ky; zsÞ

¼
Z
z0
"ðnÞ1 ðkx; ky; z0ÞKðkx; ky; z0; zsÞdz0; (11)

FIG. 4 (color online). Images of measured signal at frequen-
cies 1.7, 3.46, 5.23, and 7 GHz.

FIG. 5 (color online). Images of pseudopulse at effective
depths zs ¼ �4:0, �4:8, �6:4, and �9:6 cm.

FIG. 6 (color online). Results of subsurface tomography.
(a) Horizontal section at depth z ¼ �5 cm (retrieval without
near-field components). (b) The same as in (a), but retrieved with
near-field components. (c) Vertical section at y ¼ 10 cm.
Dashed lines mark the position and boundaries of the real target.

FIG. 7. Holography images of the target shape.
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where "ð0Þ1 ¼ 0. It is possible to obtain the kernel K in (11)

experimentally in the same way, as it was described above,
but in this case transfer functions of antennas should be
used in the analysis to calculate signal corrections at each
step of the solution. In general, it is a very difficult
computational task. But it is much simplified for plane
antennas, when sðkx; ky; !Þ ¼ Fðkx; ky; !ÞE1ðkx; ky; !Þ.
Moreover, for identical transmitting and receiving anten-
nas, it is also possible to use the reciprocity condition
Fiðkx; ky; !Þ ¼ const� jiðkx; ky; !Þ.

The studied underground inhomogeneity is formed by
the sand-water mixture around the melting ice sample with
initial sizes 10� 10� 4 cm that has been buried at depth
z ¼ �9 cm. The scanning has been carried out just in the
same way as in the former case, but now the 3D grid with
the linear size of 1 cm has been used in the analysis.
The corresponding range of these data in k space was
�2� � kx;y � 2� cm�1. The permittivity of wet sand is

frequency-dependent, so, using De Loor’s dielectric mix-
ing formula [14], we have expressed it as "1ð!Þ ¼
"1ð4:5 GHzÞfð!Þ, including frequency dependence fð!Þ
in the kernel part of the equations. At that, it was taken into
account that the dielectric parameters for dry sand and ice
are very similar.

In Fig. 8 one can see images of the synthesized pulse
in the region of measurements at four of 50 values of
the effective depth parameter from the region of analysis
(� 2 � zs � �20 cm).

The structure of the studied inhomogeneity formed by
melting ice and the region of the wet sand around the ice is
clearly seen. In Fig. 9, tomography images obtained from
the solution of (11) at the second step of iterations are given
for frequency 4.5 GHz.

The results are in a reasonable correspondence with the
expected distribution of real and imaginary parts of per-
mittivity related to the buried melting ice. One can see
regions of low values both for real and for imaginary parts
of permittivity approximately at the position of the ice
target. There are also regions of enhanced values of these
parameters around the ice location that could be expected
because of the enhancement of the water content at the
ice melting. It is also seen in Figs. 9(a) and 9(b) that ice
sample becomes shorter in the y direction, where, as it is
also seen in tomograms, the melting was stronger.

The results show the real feasibility of this method for
electromagnetic tomography of absorbing inhomogene-
ities and open new possibilities in various applications of

electromagnetic or acoustic physical diagnostics, including
biomedical diagnostics of tumors, defectoscopy, civil en-
gineering, antipersonnel mine detection, and underground
remote sensing.
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