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NEAR-FIELD TOMOGRAPHY AND HOLOGRAPHY OF LOW-CONTRAST
SUBSURFACE OBJECTS

K.P.Gaikovich1,2 ∗ and E. S.Maksimovich2 UDC 621.396.967

We develop a new method for electromagnetic computer tomography of distributed subsurface
inhomogeneities and holography (i.e., retrieval of the form) of internally homogeneous subsurface
objects. The method is based on solving the inverse problem of near-field scattering with allowance
for the data of multifrequency measurements of the two-dimensional distribution of the scattered-
field complex amplitudes along the medium surface over the region of inhomogeneities.

1. INTRODUCTION

The purpose of tomography, i.e., in this case, obtaining the three-dimensional distribution of the
dielectric permittivity in a medium with a surface inhomogeneity, consists in solving the inverse scattering
problem based on the data of multifrequency measurements of the microwave field scattered by dielectric
objects at a depth comparable with the penetration depth of the near field for the longest wavelength in
the frequency band of the probing signal. Near-field measurements are attractive due to the possibility of
going beyond the Rayleigh resolution limit, which is the only way in the case where the transition to a
shorter-wavelength band is impossible due to an increase in the wave attenuation in a medium.

Solution of such three-dimensional problems on the basis of the Maxwell equations is related to severe
restrictions imposed on the dimension of the analysis grid and, consequently, the rigid constraint on the
achievable resolution. Therefore, in some works, approaches have been proposed according to which the
nonlinear integral equation, which is equivalent to the Maxwell equations with boundary conditions, is re-
duced to the one-dimensional integral equation for the transverse (to the line of sight) spatial-inhomogeneity
spectrum and then solved repeatedly for each pair of spectral components. This reduction, which is based on
the two-dimensional Fourier transform with respect to the coordinates transverse to the line of sight, is not
always possible since in the general case, the initial equation is not a convolution equation and admits such
a representation in some cases only. In this respect, we can mention the methods developed for microwave
radiometry and impedance diagnostics, for low-frequency sounding of the Earth’s crust, and the method
based on measuring the scattering of the wave field, which penetrates into a medium in the case of total
internal reflection, from a subsurface inhomogeneity [1, 2].

Herein, we develop an approach based on the scheme of measurements [3] which are performed
in the two-dimensional region over the inhomogeneity by a rigidly bound source–receiver system. Depth
sensitivity is ensured by measurements depending on the third parameter, such as signal frequency, or
diameter of the receiving-antenna aperture, or height of the scanning level. This scheme transforms the three-
dimensional equation in the Born approximation to a convolution equation reduced to a one-dimensional
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integral equation, which should be solved for each pair of wave numbers in the two-dimensional spectrum
transverse to the line of sight. Moreover, this approach allows one to obtain a certain correction to the
solution in the Born approximation. The transverse spatial spectra of the Green’s functions, which form
the kernel of the solved equation, were obtained in explicit form in [3]. In that work, the method for solving
such Fredholm equations of the first kind for complex-valued functions in the Sobolev space W 1

2 on the basis
of the generalized-residual principle was also tested.

This approach was experimentally realized as a method of subsurface microwave tomography of
inhomogeneities in soil [4]. Analyzing the results of the experiment, we faced difficulties in discerning the
subsurface scattering signal against the background of strong contribution made by the scattering from the
surface. We managed to overcome these difficulties by transforming multifrequency data to a synthesized
complex pseudo-pulse, in which these contributions were separated effectively. The equation to be solved
was transformed to this new formulation of the problem, and good results of the tomography of distributed
and spatially limited test inhomogeneities were obtained.

It should be noted that the shape of the surface is a determining characteristic for internally homo-
geneous and spatially limited objects, which occur in practice much more frequently than inhomogeneous
objects. However, the determination of the shape (the task of computer holography), based on the results
of solving a more general tomography problem, is not a trivial problem, as will be shown in what follows.
The approach to solving the problem of holography of such object and the first results are also described
in [4]. To a certain extent, similar approaches are currently developed with the purpose of obtaining radio
holography images of surfaces of metal inhomogeneities [5].

In this work, the above-described method of tomography and holography is studied on the basis of
both numerical and full-scale experiments.

2. INVERSE PROBLEM OF SCATTERING IN A MULTILAYER MEDIUM

Although in this work we consider the problem for the case of probing inhomogeneities in a homoge-
neous half-space, the proposed method is valid for a significantly more general case of a multilayer medium
if the measuring system and the probed inhomogeneity are located in different layers. For example, let the
probing system be located in the kth layer (the layers are numbered in the z direction) with the complex
dielectric permittivity ε = ε0k and magnetic permeability μ = μ0k and the probed inhomogeneity, in the
lth layer with ε = ε0l and μ = μ0l. Then, the distribution of the complex dielectric permittivity in the
lth layer is represented as a sum of the constant component of the dielectric permittivity of the medium in
this layer and the three-dimensional inhomogeneity of the medium, whose distribution should be retrieved
from the measurements of ε(r) = ε0l + ε1(r). The complex amplitudes of the total field measured in the kth
layer in the two-dimensional region (x, y) at the frequency ω are determined by the sum of the components
of the probing and scattered fields: E(x, y, z, ω) = E0(x, y, z, ω) + E1(x, y, z, ω). The scattered field E1

is determined by the distribution ε1(r) of the inhomogeneity by means of the three-dimensional integral
Fredholm equation of the second kind. It was shown in [3] that for the measurement scheme with a rigidly
bound system of a source and a receiver the distance between which is specified by the vector δr, this
integral equation in the Born approximation has the form of a convolution with respect to the transverse
coordinates x and y. The form of this equation allows one to use the two-dimensional Fourier transform to
obtain a one-dimensional integral equation for each pair of the components kx and ky of the scattered-field
spectrum transverse to the line of sight:

E1i(kx, ky, ω, z, δr) = −4π3iω

0∫

−∞
ε1(kx, ky, z

′)

{+∞∫∫

−∞
exp(−iκx δx− iκy δy)

×
∞∫

0

[
jq(κx, κy, z

′′ − z − δz, ω)Gkl
qj(κx, κy, z

′′, z′, ω)
]
G̃lk

ji(κx + kx, κy + ky, z
′, z, ω) dκx dκy dz′′

}
dz′, (1)
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where Gkl
qj = ‖Gkl

qj +
⊥Gkl

qj and G̃lk
ji = ‖G̃lk

ji +
⊥G̃lk

ji are the components of the Green’s functions (tensors)
in the k-space for the TE(⊥) and TH(‖) polarizations, and ji are the components of the transverse current
spectrum in the field source (for brevity, the same notations are used for the transverse spectra, with a few
exclusions). It is assumed that the repeated subscripts q and j, which can be x, y, and z, are summed over
(no summation takes place over the layer numbers k and l) and the subscript i can also be x, y, and z. The
components of the Green’s functions for the probing field are written as

‖,⊥Gkl
qj = − k20

2πωk⊥
g
‖,⊥
qj (kx, ky)

T
‖,⊥
kl

1−R
‖,⊥
k,1 R

‖,⊥
k,N+1 exp(2ikzkdk)

×
{
exp[ikzk (zk − z′)] +R

‖,⊥
k,1 exp[ikzk (z

′ − zk + 2dk)]
}

×
{
exp[ikzl (z − zl)] +

z
(l)‖,⊥
in − z

‖,⊥
l

z
(l)‖,⊥
in + z

‖,⊥
l

exp[2ikzldl − ikzl (z − zl)]
}
, (2)

g‖(kx, ky) =
1

kkkl

⎛
⎜⎜⎜⎜⎜⎜⎝

k2xkzl
k⊥

kxkykzl
k⊥

−kxk⊥

kxkykzl
k⊥

k2ykzl
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−kyk⊥

−kxk⊥kzl
kzk

−kyk⊥kzl
kzk

k3⊥
kzk

⎞
⎟⎟⎟⎟⎟⎟⎠

, g⊥(kx, ky) =
1

kzkk⊥

⎛
⎝ k2y −kxky 0

−kxky k2x 0
0 0 0

⎞
⎠ ,

R
‖,⊥
k,N+1 =

z
(k+1)‖,⊥
in − z

‖,⊥
k

z
(k+1)‖,⊥
in + z

‖,⊥
k

, T⊥
kl =

l∏
i=k+1

z
(i)⊥
in + z⊥i

z
(i)⊥
in + z⊥i−1

exp(ikzidi),

T
‖
kl =

√
εkμl

εlμk

l∏
i=k+1

z
(i)‖
in + z

‖
i

z
(i)‖
in + z

‖
i−1

exp(ikzidi), z
(k)‖,⊥
in =

z
(k+1)‖,⊥
in − iz

‖,⊥
k

z
‖,⊥
k − iz

(k+1)‖,⊥
in

tan(kzkdk)

tan(kzkdk)
z
‖,⊥
k ,

z
(N+1)‖,⊥
in = z

‖,⊥
N+1, z

‖
k =

kzk
k0εk

, z⊥k =
μkk0
kzk

, dN+1 = 0.

The corresponding components for the scattered field are written as

‖,⊥G̃lk
ji = − k20

2πωk⊥
g̃
‖,⊥
ji (kx, ky)

T̃
‖,⊥
lk

1− R̃
‖,⊥
l,1 R̃

‖,⊥
l,N+1 exp(2ikzldl)

×
{
exp[−ikzl (zl−1 − z′)] + R̃

‖,⊥
k,N+1 exp[−ikzl (z
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}
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exp[−ikzk (z − zk)] +

z̃
(k)‖,⊥
in − z

‖,⊥
k

z̃
(k)‖,⊥
in + z

‖,⊥
k

exp[−2ikzkdk + ikzk (z − zk−1)]
}
, (3)
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1
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T̃
‖
lk =

√
εlμk

εkμl

l−1∏
i=k

z̃
(i)‖
in + z

‖
i

z̃
(i)‖
in + z

‖
i+1

exp(ikzidi), z̃
(l)‖,⊥
in =

z̃
(l−1)‖,⊥
in − iz

‖,⊥
l

z
‖,⊥
l − iz̃

(l−1)‖,⊥
in

tan(kzldl)

tan(kzldl)
z
‖,⊥
l ,

z̃
(1)‖,⊥
in = z

‖,⊥
1 , z

‖
l =

kzl
k0εl

, z⊥l =
μlk0
kzl

, d1 = 0,

kzl =
√

k2l − k2x − k2y =
√

k2l − k2⊥, kl =
√
εlω/c, where c is the speed of light and di is the layer thickness.

Relationship (1) is an integral Fredholm equation of the first kind. On this basis, one can solve the
inverse scattering problem in various formulations. The problem formulation is determined by choosing
the parameters ω, z, or δr, which determine the depth selectivity of the kernel of this equation. In the
multifrequency method, the data of measurements in the two-dimensional region (x, y) at the level z are
used as functions of the frequency ω are used. If one uses the data of single-frequency scanning at various
levels z from the interface of the media (multilevel method), then the depth selectivity of the method will be
related to the variation in the depth of near-field penetration to the inhomogeneity in the probed medium.
One can also use the dependence of the kernel on the vector δr which determines the mutual position of the
antennas. In practice, however, the multifrequency method is much simpler, and it is this method that is
studied in the present paper for the case of an inhomogeneity in the half-space of a homogeneous medium.

Based on the results of the solution ε1(kx, ky, z) of inverse scattering problem (1), the desired
three-dimensional distribution for the dielectric-permittivity deviation ε1(x, y, z) is determined by a two-
dimensional inverse Fourier transform, whose visualization underlies the proposed method of electromagnetic
tomography. To achieve its realization in practice, one should also allow for the influence of the transfer
function of the measuring system.

3. THEORY OF TOMOGRAPHY AND HOLOGRAPHY

3.1. Tomography

Figure 1 shows the scheme of measurements of the

Fig. 1. Scheme of measurements by the method of
subsurface microwave tomography.

field scattered by an inhomogeneity.

For the scheme under consideration, variations in
the complex amplitudes of the received signal s are ex-
pressed by the convolution of the instrument function F
of a receiver with the scattered-field distribution E1:

s(rr)

=

∫
E1(r

′)F(xr − x′, yr − y′, zr, z′) dx′ dy′ dz′, (4)

where rr = (xr, yr, zr) is the vector which determines the
receiver position. Performing the two-dimensional Fourier
transform over the transverse coordinates xr and yr, from Eqs. (1) and (4) we obtain the one-dimensional
integral equation for the transverse spectrum of the signal measured in the scanning process at the level zr:

s(kx, ky, ω) =

0∫

−∞
ε1(kx, ky, z

′)K(kx, ky, z
′, ω) dz′, (5)

K(kx, ky, z
′, ω) = −4π3iω

0∫

−∞

{
Fi(kx, ky, z, ω)

+∞∫∫

−∞
exp(−iκx δx− iκy δy)
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×
∞∫

0

[
ji(κx, κy, z

′′ − z − δz, ω)G12
ij (κx, κy , z

′′, z′, ω)
]
G̃21

ji (κx + kx, κy + ky, z
′, z, ω) dκx dκy dz′′

}
dz.

Equation (5) was used in the subsurface tomography algorithms developed in [3] and in tests of
multifrequency microwave tomography in [4]. Equation (1) also allows one to determine the kernel of the
three-dimensional integral for calculation of the measured signal in Cartesian coordinates within the Born
approximation:

s(rr, ω) =

∫
ε1(r

′)K(xr − x′, yr − y′, zr, ω, z′) dx′ dy′ dz′. (6)

It is noted above that in our first experiments it was difficult to discern a subsurface object in the
obtained two-dimensional distributions of the signal s(x, y, ω) against the background of strong noise, which
was determined, as it turned out, by the scattering from the surface. However, it has been found that
subsurface objects are clearly discernible when visualizing the signal transformed to the synthesized pulse

s(xr, yr, t) =

∫

Δω

s(xr, yr, ω) exp(iωt) dω =

∫
ε1(r

′)K(xr − x′, yr − y′, zr, t, z′) dx′ dy′ dz′, (7)

where the time dependence can conveniently be replaced by the dependence the effective scattering depth zs
using the formula t = −2zsRe

√
ε0/c (with allowance for the finite speed of light and the signal path towards

the scattering element and back):

s(xr, yr, zs) =

∫
ε1(r

′)K(xr − x′, yr − y′, zs, z′) dx′ dy′ dz′. (8)

Subsurface objects were easily observed by visualization of the pseudo-pulse amplitude |s(xr, yr)| at some
values of zs, which increased as the object went deeper in the layer. The strong maximum of the pseudo-
pulse, which was observed in the entire two-dimensional region of measurement xr and yr, marked the value
of zs corresponding to the scattering from the surface. In order to use the informative part of the signal
singled out in the pseudo-pulse during solving the inverse problem, initial equation (5) was transformed in
a similar way:

s(kx, ky, t) =

∫

Δω

s(kx, ky, ω) exp(iωt) dω, (9)

where t = −2zsRe
√
ε0/c, and the integral is taken around the analysis band Δω. A new equation is obtained

from formula (9), which connects the transverse spectra of inhomogeneity of the dielectric permittivity and
the synthesized pseudo-pulse:

s(kx, ky , zs) =

∫

z′

ε1(kx, ky, z
′)K1(kx, ky, z

′, zs) dz′,

K1(kx, ky, z
′, zs) = K1(kx, ky, z

′, t = −2zs Re
√
ε0/c),

K1(kx, ky, z
′, t) =

∫

Δω

K(kx, ky, z
′, ω) exp(iωt) dω. (10)

Equation (10) was solved by the generalized disparity method for the complex-valued functions [3].
Finally, the solution of the tomography problem, i.e., the sought-for three-dimensional structure of the
complex dielectric permittivity, is obtained from the solution of Eq. (10) in the k-space by using the inverse
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Fourier transform:

s1(x, y, z) =

+∞∫∫

−∞
ε1(kx, ky, z) exp(ikxx+ ikyy) dkx dky. (11)

3.2. Holography

In practice, subsurface inhomogeneities are internally homogeneous most frequently, i.e., ε01 =const.
For such objects, it is sufficient to solve a simpler problem of reconstruction of the shape of their surfaces,
i.e., a computer holography problem [4], by using the solution of the tomography problem ε1(κx, κy , z) in
the k-space, which was obtained from Eq. (10). For this purpose, we represent the object boundary in the
cross-section z =const as two functions x1(y, z) and x2(y, z), as is shown in Fig. 2.

Assuming that the functions x1(y, z) and x2(y, z) are single-valued, the solution of problem (10) can
be represented as

ε1(kx, ky, z) =
1

4π2

y2∫

y1

x2(y)∫

x1(y)

ε01 exp(−ikxx− ikyy) dxdy

=
ε01
4π2

y2∫

y1

exp(−ikyy)
exp[−ikxx1(y)]− exp[−ikxx2(y)]

ikx
dy. (12)

Then, we perform the Fourier transform over ky,

ε1(kx, y
′, z) =

+∞∫

−∞
ε1(kx, ky, z) exp(ikyy

′) dky, (13)

and obtain (having renamed y′ → y) the following complex-valued transcendental equation:

ε1(kx, y, z) =
ε01

2πikx

{
exp[−ikxx1(y, z)]− exp[−ikxx2(y, z)]

}
, (14)

which is equivalent to a system of two real equations.

Fig. 2. Boundary of the probed object in the cross
section z = const in the form of the functions
x1(y, z) and x2(y, z).

The solution of the latter equations allows one to find the
shape of an object as two functions x1(y, z) and x2(y, z)
using the perturbation of the dielectric permittivity
ε1(κx, y, z), which was obtained by solving Eq. (10). It
should be noted that this system is overdetermined, since
solutions can be found for each value of kx. The overde-
termination is due to the fact that the surface holography
problem is simpler than the tomography problem. The
freedom in selection of the component kx allows one to
find ways to optimize the solving of Eq. (14), which opens
up free scope for special research.

Our first optimization experiment was based on
choosing the optimal value of this component. The results
of such a simple optimization demonstrate that the best
results are ensured by choosing kx ≈ 2π/Lt, where Lt is the estimation of the typical object size, which is
made on the basis of visualization of the transverse distribution of the pseudo-pulse. Note that an equation
similar to Eq. (14) can be also obtained for the description of the surface by the functions y1(x, z) and
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y2(x, z). Solving this equation allows one to supplement and verify the result of solving Eq. (14).

It should be emphasized that solving the tomography problem for objects with sharp boundaries on
the basis of Eq. (11) does not allow reconstructing the object surface precisely, even neglecting the error of
solution of this ill-posed problem. The matter is that discontinuous functions cannot be represented exactly
by even an anyhow long Fourier series near the gradient-singularity points, although this representation
is underlying for this tomography method. At such points, the Dini test for pointwise convergence is not
satisfied, and the results will be inevitably distorted due to the Gibbs phenomenon. Allowing for errors,
smoothing of stepwise functions during their reconstruction is inevitable. Therefore, if it is a priori known
that the object is homogeneous, one should solve the problem of selecting the criterion for determination
of the position of the sharp boundary in the smoothed solution. Solving Eq. (14) is such a mathematically
consistent way of this selection.

4. MULTIFREQUENCY MICROWAVE TOMOGRAPHY AND HOLOGRAPHY

The developed theory was implemented in numerical algorithms and applied in the experiments,
whose first results were published in [4]. The initial data for analysis were the results of measuring complex
amplitudes of the signal at 801 frequencies in the range 1.7–7 GHz in the two-dimensional region (x, y) over
the probed subsurface inhomogeneity by using an “Agilent E5071B” vector network analyzer. The scanning
system consisted of two identical, rigidly bound bow-tie antennas having dimensions of 3.8× 5.4 cm and the
distance δy = 7.5 cm between their centers in the bistatic configuration.

The current distribution on these wideband antennas is strongly localized near their centers. This
fact ensures a very wide transverse spectrum over the wave vector, so that for a greater part of the range
under analysis, the components with {kx, ky} > 2π/λ are dominant. Then, according to Eq. (1), a wide
near-field spectrum of the signal is formed, and it is possible to achieve a subwavelength resolution power.
Theoretically, if one neglects data errors, the depth of such a high-resolution tomography region is unlimited.
In practice, however, it will be determined only by the equipment sensitivity. Thus, in practice, due to
attenuation of the near-field components in the probed medium, the resolution power decreases gradually
and reaches the level determined by the Rayleigh limit.

4.1. Numerical simulation

Since it is impossible to obtain a simple relationship between the data error and the solution error
in ill-posed problems and, moreover, the solution accuracy depends on the type of the reconstructed distri-
bution, the mandatory stage of the study [6] is numerical simulation of the problem for a class of typical
(or expected) probed objects by using the closed scheme (i.e., calculation of the scattered field for the mod-
eled inhomogeneity, introduction of a random error, solution of the inverse problem with respect to these
“measurement data,” and comparison of the result with the parameters of the specified inhomogeneity).

To make it possible to scale and apply the results in different frequency bands, in the simulation we
used dimensionless spatial scales specified in units of the minimum wavelength λmin of the analysis, which
was equal to λmin ≈ 4 cm in our experiments. On this scale, the wavelength range of the analysis was
equal to 1–4, and the sizes of the region of two-dimensional scanning in the (x, y) plane was 7.5 × 5. The
modeling was performed for the medium with dielectric permittivity ε0 = 4 + i 0.5. Other spatial scales of
the above-described system were transformed in a similar way.

Since the quality of solving the inverse problems described by integral Fredholm equations of the first
kind are decisively determined by the form of their kernel, the corresponding calculations were performed for
the kernel of Eq. (5), where the multifrequency data were used directly, and for the kernel of Eq. (10) for the
pulse synthesized on their basis. In Fig. 3, these kernels are shown for the couple of values kx = ky = 2π/λmin.

One can easily see in Fig. 3a that the contribution of the near-surface layer is dominant in the
kernel of Eq. (5), which determines formation of the signal at individual frequencies. This explains noise
contamination of the signal from embedded objects due to surface scattering, whereas the kernel for the
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Fig. 3. Kernel of Eq. (5) at kx = ky = 2π/λmin (a) and the corresponding kernel in Eq. (10) (b).

Fig. 4. Kernel of Eq. (8) at X = Y = 0 (a); X = 0, Y = δy/2 = 0.9 (b); and X = Y = 1 (c).

synthesized pseudo-pulse in Fig. 3b has maxima at different depths, at which the scattering objects located
near them are detected. Such a kernel, due to its well-pronounced depth selectivity, forms the conditions
which are drastically better for solving the inverse problem, since its properties approache those of a perfect
kernel, i.e., a sequence of delta functions.

Since visualization of the pseudo-pulse amplitude |s(xr, yr, zs)| is used in the Cartesian coordinates in
the scanning region rather than in the k-space for the purposes of detection and localization of a subsurface
inhomogeneity, a comprehensive understanding of the pulse formation can be obtained by considering the
kernel of Eq. (8), which is calculated by means of inverse Fourier transform of the kernel in Eq. (10):

K(X,Y, zs, z
′) =

+∞∫∫

−∞
K1(kx, ky, z

′, zs) exp(ikxX + ikyY ) dkx dky,

where X = xr − x′ and Y = yr − y′.
Figure 4a shows the kernel of Eq. (8) for the receiver located directly over the scattering element.

One can see, that as in Fig. 3b, high selectivity of the pseudo-pulse with respect to the depth position of the
scattering element occurs. Figure 4b shows the kernel in the case where the scattering element is located
in the middle between the receiving and transmitting antennas. In this case, the mirror component in the
scattering increases, which is especially noticeable at a certain depth of the scattering element under the
surface. On the whole, when the antenna is shifted off the vertical towards the scattering element, one
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observes a decrease in the response at small depths of the scattering element and the response blurring,
which is demonstrated in Fig. 4c.

Efficiency of the tomography and holography algorithms was studied numerically. The calculations
of the scattered signal were performed in the integrated high-performance calculation environment of the
metacluster of Lobachevsky State University of Nizhny Novgorod. The scattered field and the complex am-
plitudes of the received signal were calculated for the simulated objects, and a random, normally distributed
error with a standard deviation of 10% was introduced to these quantities. The obtained “measurement
data” were used for analysis. Figure 5 presents the results of tomography and holography of the simulated
inhomogeneity, namely, a parallelepiped having sizes 1 × 0.75 × 0.5 in relative units at the depth z = −1.
These results were found from the solutions of Eqs. (10) and (14), respectively.

One can see that the algorithms show high efficiency and reconstruct the main parameters, shape, and
position of the simulated inhomogeneity with good accuracy. It should be emphasized that each particular
case of application of the proposed methods requires such a detailed study. However, numerical calculations
are unable to reproduce all details of electrodynamics of an actual measuring system, especially when the
objects are not low-contrast. Therefore, the question about the degree of reliability of the obtained results
cannot be answered without accumulating experience from real experiments.

4.2. Experimental studies

The experiments showed that the proposed methods can be sufficiently efficient for weakly scattering
dielectric objects. To a significant degree, this is due to the fact that when solving integral equation (5),
one can use the “empirical” kernel obtained in an experiment with thin test objects having known shapes
and located in small steps over the depth interval required for the analysis. The corresponding transverse
spectrum of deviation of the dielectric permittivity of such an object can be represented as ε1(kx, ky, z

′) =
εt(kx, ky) δ(z

′ − z0), and kernel function is determined as K1(kx, ky, z0, zs) = s(kx, ky, zs, z0)/εt(kx, ky).

If follows from the theory [3] that the integral representation of the signal is valid with a certain degree
of accuracy beyond the framework of the Born approximation, as well. Therefore, this “experimental” kernel
includes naturally the adjustment proposed in [3]. Such experimental studies were performed with the use
of thin dielectric plates buried in a sand medium. Figure 6 shows kernel (10) of an integral equation for the
transverse spectrum for the pseudo-pulse of the solved inverse problem, which was obtained for the pair of
spectral components kx = ky = 2π/4 cm−1, and the kernel in Eq. (8) for the pseudo-pulse in the Cartesian
coordinates for the receiving antenna over the scattering elements (X = Y = 0).

One can see good agreement between the experimental kernels and the results of the theoretical
calculations in Figs. 3 and 4, which demonstrates that the theory is adequate for the conditions under
consideration.

The efficiency of the proposed methods was studied experimentally depending on the depth and
shape of the probed objects. The depth dependence of the results was studied using foam-plastic test
objects having dimensions 4× 4× 1 cm and buried in sand.

Figure 7 (two upper and two lower rows of the panels) shows the results of measurements, i.e.,
visualized distributions of the scattered-signal amplitude at 5 out of 801 frequencies used in the analysis
(f = 1.7, 3.025, 4.35, 5.675, and 7 GHz) in comparison with the images of the amplitudes of the synthesized
pseudo-pulse at five values of the effective scattering depth (zs = −6, −6.5, −7, −7.5 and −8 cm) for an
object at one of the depths (zt = −7 cm).

The results of measuring the scattered signal at individual frequencies, which are shown in Fig. 7
(upper rows), demonstrate how strongly the scattering from the object surface contaminates the signal
scattered by the subsurface object with noise. At the same time, these components of the scattered signal
are separate in the distributions of the pseudo-pulse synthesized on the basis of the multifrequency data
(lower rows in Fig. 7), and the probed object becomes easily discernible in some interval of values of the
parameter zs. One can note that the maximum scattering amplitude and the best sharpness of the image
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Fig. 5. Tomography simulation: the simulated object in the section y = 2.5 (a) and the tomography result
(b) in the same section. Homography simulation: reconstruction of the object boundary using the function
x1(y, z), where lighter regions correspond to smaller values of x2 (c), and the function x2(y, z), where lighter
regions correspond to greater values of x2) (d).

Fig. 6. “Experimental” kernel K1(kx, ky, z
′, zs) in Eq. (10) for kx = ky = 2π/4 cm−1 (a) and the kernel

K(X,Y, zs, z
′) in Eq. (8) for X = Y = 0 (b).

are achieved if the effective scattering depth corresponds to the object depth. It allows one to estimate
qualitatively the transverse and depth localization of the object, which is very important for solving the
inverse problem and use the data from the interval of values of zs, where the scattering by the object is
stronger than noise (in the informative range), in solving Eq. (10).
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Fig. 7. Two upper rows: the signal amplitudes |s(f)| in the analyzed region at five frequencies f = 1.7, 3.025,
4.35, 5.675, and 7 GHz (left to right and top to bottom) for an object at the depth zt = −7 cm; darker regions
correspond to a higher signal level. Two lower rows: distributions of the pseudo-pulse amplitude |s(zs)| at the
effective scattering depths zs = −6, −6.5, −7, −7.5, and −8 cm (left to right and top to bottom); lighter
regions correspond to a higher amplitude of the pseudo-pulse.
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Fig. 7 (continued). Results of subsurface microwave tomography (vertical section of the dielectric-permittivity
deviation at y = 10 cm for objects at the depths zt = −1, −3, and −7 cm) (a). Visualization of the
holographic analysis, i.e., the surface of inhomogeneities at the depths zt = −1, −3, and −7 cm, which
was determined from Eq. (14) as the two functions x1(y, z) and x2(y, z), where lighter regions correspond to
smaller values of x1 and greater values of x2 (b), (c)

.

Figure 7 (continued) shows the results of holographic and tomographic analysis based on solving
Eqs. (10) and (14) for an object at the depths zt = −1 −3, and −7 cm. In this analysis, we used the
distributions of the pseudo-pulse in the range −0.5 ≤ zs [cm] ≤ −10. The region of analysis in the k-space
was specified as −8π ≤ kx[cm

−1] ≤ 8π and −8π ≤ ky[cm
−1] ≤ 8π. The results demonstrate good (no worse

than 20%) accuracy of determination of the parameters, position, and shape of the objects at different
depths.

One can see that as the object is shifted towards the near-zone boundaries for the maximum wave-
length, the object image gradually blurs, but on the whole, the quality of tomographic and holographic
analysis is still rather satisfactory.

The method was studied for objects having different shapes and compositions. Figure 8 shows the
results of studies for a spherical epoxide object of 6 cm in diameter buried at the depth zt = −4 cm (a
billiard ball), whose dielectric permittivity is close to that of the surrounding sand environment (ε ≈ 5)

One can see that in the case of a rather small difference between the dielectric permittivities of
the object and the medium, the visualized object is less discernible compared with the case shown in
Fig. 7. However, this small difference in the dielectric permittivities ensure better fulfillment of the Born
approximation, and the results demonstrate good quality of reconstruction of the shape and determination
of the position of the probed low-contrast dielectric object.

5. CONCLUSIONS

Based on numerical simulations and experimental studies, we demonstrated efficiency of the developed
methods of microwave tomography and holography, as well as their good transverse (to the line of sight)
and depth resolution power for subsurface inhomogeneities having low contrast in terms of their dielectric
permittivities. At the same time, much effort should be focused on studies of the limits of applicability
of these methods for higher-contrast object complex-shape objects, and media with significant absorption
and high dielectric permittivities, such as, e.g., water or biological media. Apparently, this will require new
approaches to solving the inverse problem beyond the limits of applicability of the Born approximation, as
well as transition to a longer-wavelength band. However, such studies are very promising for applications
in defectoscopy, analysis of ground penetrating radar data, and, especially, in medical applications, where
low-contrast manifestations of various pathologies are of enhanced interest. The developed methods can
be transferred without significant changes in the algorithms to the problems of geomagnetic or acoustic
sounding (see, e.g., [1, 7]).
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Fig. 8. Two upper rows: distributions of the pseudo-pulse amplitude |s| for the effective scattering depths
zs = −4, −5, −6, and −10 cm (left to right and top to bottom). The lower row: visualization of the
holographic analysis, i.e., the object surface determined from Eq. (14) as two functions x1(y, z) and x2(y, z).
Lighter regions correspond to smaller values of x1 and greater values of x2.
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