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INVERSE PROBLEMS OF LOW-FREQUENCY DIAGNOSTICS
OF THE EARTH’S CRUST

K.P.Gaikovich1,3 ∗ and A. I. Smirnov2,3 UDC 550.837+550.838

We develop and test (in numerical simulation) methods of computer tomography of distributed
under-surface inhomogeneities in the conductivity of a medium and for holography (i.e., recon-
struction of the shape) of solid and uniformly composed subsurface objects in the context of the
problems of multifrequency electromagnetic diagnostics of the Earth’s crust structure in the ex-
tremely and ultra low frequency bands. The methods are based on solution of the inverse scattering
problem using the results provided by multifrequency measurements of the distribution of complex
amplitudes of the electromagnetic field on the surface of the medium under consideration.

1. INTRODUCTION

Low-frequency electromagnetic probing of the Earth’s crust is performed at frequencies from thou-
sandths to hundreds of hertz using both natural sources (geomagnetic activity) and coherent signals radiated
from antennas [1, 2], whose role can be played, in particular, by pipelines and electric power transmission
lines. The depth of penetration of electromagnetic waves into the Earth depends on the frequency and can
achieve several kilometers in this frequency range, which allows diagnosing. At such depths, the Earth’s
crust has a layered structure, as a rule, and the frequency spectra of the electric and magnetic fields, which
are measured on the Earth’s surface, are the initial data for reconstruction of the profile of the geoelectric
section (conductivity). This profile is of great interest for solving the problems of geophysics and geology.
However, even such a one-dimensional inverse problem is extremely complex. It was formulated for the first
time by A.N.Tikhonov in [3], where it was solved for a multilayer medium by the method of minimiza-
tion of the residual functional. Later, the theory and methods for solving this problem were developed in
monograph works [4, 5].

In our works, we continue to develop algorithms intended for solving ill-posed inverse problems and
based on mathematically rigorous regularization methods. For example, in [6], the one-dimensional inverse
problem of low-frequency probing of the Earth’s crust was formulated on the class of continuous functions.
We also proposed an algorithm for solving the nonlinear integral equation of the first kind, which was
obtained using perturbation theory. In [7, 8], the results of numerical simulation of such a problem were
presented on the basis of a specially developed iterative algorithm using Tikhonov’s generalized-residual
method. However, when simulating strongly contrasting inhomogeneities, this algorithm could result in
divergence starting from the second or third iteration. Therefore, in [9] we have started studying the
possibilities of the dual-regularization method [10], based on generalization of the Lagrangian approach to
the optimization theory, which is new in the theory of nonlinear ill-posed inverse problems. Its efficiency
was demonstrated by numerical simulation [11].
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Fast development of computational tools allowed one to apply the concepts of multifrequency elec-
tromagnetic probing of the Earth’s crust for diagnostics of three-dimensional (volume) inhomogeneities of
conductivity on the basis of the data of multifrequency two-dimensional scanning of the scattered electro-
magnetic field over the Earth’s surface. The methods of retrieving the parameters of such inhomogeneities
(computer tomography techniques) were developed with the use of various approaches to solving the in-
verse scattering problem formulated within the framework of three-dimensional integral equations of per-
turbation theory for the electromagnetic field (see monograph work [12]). In this case, use was made of
reduction of these equations to a simpler system with the subsequent regularization following Tikhonov’s
technique [13, 14], parametrization [15], and the statistical [16] and neural network [17] approaches.

The complexity of solving three-dimensional nonlinear ill-posed inverse problems consists in funda-
mental limitations imposed on the dimension of discretization of the algorithms and, consequently, on the
achievable resolving power. For example, when we specify the dimension equal to 100 elements along each
coordinate, we find that for the six-dimensional kernel of the three-dimensional equation solved, it is nec-
essary to store 1012 numbers in the computer memory, which makes the use of supercomputers necessary.
This is why all the above-cited works employ various simplifying approximations, use parametrization and
modeling, which reduce the dimension of the desired distribution, introduce (from various considerations)
first approximations close to the solution, and apply the methods which does not have sufficient justification.

The limitations imposed on the dimension of discretization can be overcome using the approach [18, 19]
developed by us and based on reduction of three-dimensional integral equations to equations of the convo-
lution type with respect to the transverse coordinates. This allows one to use the two-dimensional Fourier
transform in order to reduce the problem to multiple solution of the one-dimensional integral Fredholm
equation of the first kind for each pair of components of the transverse spectrum in the wave-vector space.
It was shown in [8, 18, 19] that the proposed simplification is possible in cases where the probing field is
a locally plane wave, which, in particular, takes place in the problem of geomagnetic probing, as well as
when scanning by a rigidly coupled transmitter–receiver system. We implemented this scheme as a method
of near-field multifrequency tomography in the microwave band [20]. The efficiency of this method was
demonstrated experimentally in the case of dielectric inhomogeneities in the ground, which were located in
the near zone of the antenna system. In [20, 21], a method of visualization of this surface was developed for
internally homogeneous objects, which are determined completely by the shape of their surfaces, i.e., the
problem of computer holography was solved.

In this work, we use the experience accumulated in the process of solving the problems of subsurface
microwave probing as a basis for the development of algorithms of multifrequency tomography and holog-
raphy of three-dimensional inhomogeneities of conductivity of the Earth’s crust in extremely low-frequency
(ELF) and ultra low-frequency (ULF) bands. Additionally, the method of selection of the fields scattered
by surface and subsurface inhomogeneities, which was proposed in [20], is generalized to the case of strongly
conducting media by means of converting the data of measurements at various frequencies to a specially
synthesized pseudopulse. The performed numerical simulation clearly demonstrates the efficiency of the
methods used for solving the inverse problem of low-frequency diagnostics of the Earth’s crust.

2. TOMOGRAPHY AND HOLOGRAPHY OF LOW-CONTRAST THREE-DIMENSIONAL
INHOMOGENEITIES OF CONDUCTIVITY OF THE EARTH’S CRUST

Let a given current source with the density j(r) exp(−iωt), where r is the radius vector, t is the time,
and ω is the angular frequency, be located in free space (z > 0) over the half-space z < 0 filled with a
medium having the complex dielectric permittivity ε− = ε0 + ε1(r). The z axis of the Cartesian coordinate
system (x, y, z) is directed upwards with the point z = 0 corresponding to the interface of the medium and
free space, and the x and y axes are directed along this interface. The electromagnetic field excited by such
a source satisfies the Maxwell equations

rotE =
iω

c
H, (1)
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rotH+
iω

c
[ε̄(z) + ε1(r)]E =

4π

c
j(r), (2)

where E and H are the complex amplitudes of the electric and magnetic fields, c is the speed of light in free
space, ε1 = 0 and ε̄ = 1 for z > 0, and the current density j = 0 and ε̄ = ε0 for z < 0.

We transpose the term proportional to ε1(r) to the right-hand side and consider it as an effective
source of the scattered radiation with the current density jeff = −iωε1(r)E/(4π):

rotH+
iω

c
ε̄(z)E = − iω

c
ε1E+

4π

c
j =

4π

c
(jeff + j). (3)

Using the formalism of the Green’s functions calculated for the medium with the dielectric permit-
tivity ε̄(z), one can write the integral formulas, which relate the electric field E(1)(r) = E(r) in free space
for z > 0 and the electric field E(2)(r) = E(r)inthemedium for z < 0 [19]:

E
(1)
i (r) = E

(1)
0i (r) + E

(1)
1i (r) = E

(1)
0i (r)−

iω

4π

∫

V ′

ε1(r
′)E(2)

j (r′)G21
ji (x− x′, y − y′, z, z′) d3r′,

E
(2)
i (r) = E

(2)
0i (r) + E

(2)
1i (r) = E

(2)
0i (r)−

iω

4π

∫

V ′

ε1(r
′)E(2)

j (r′)G22
ji (x− x′, y − y′, z, z′) d3r′, (4)

where

E
(2)
0i (r) =

∫

V ′

jj(r
′)G12

ji (x− x′, y − y′, z, z′) d3r′,

E
(1)
0i (r) = − iω

4π

∫

V ′

jj(r
′)G11

ji (x− x′, y − y′, z, z′) d3r′. (5)

Here, we imply summation over the repeated indices i and j, which stand for x, y, or z, Gkl
ji(x−x′, y−y′, z, z′)

are the elements of the tensor Green’s function, each of which is equal to the value of the ith projection
of the electric field produced at the point r = (x, y, z) in the medium with the dielectric permittivity ε̄(z)
by the jth component of the current density jj ∝ δ(r − r′) of a given point source, and the superscripts k
and l take two values and identify the media in which the source and the source-excited field are considered

(the half-spaces z > 0 and z < 0 correspond to 1, to 2, respectively). The fields E
(1)
1 (r) and E

(2)
1 (r) are the

scattered fields in media 1 and 2, respectively.

Equations (5) determine the structure of the unperturbed probing fields E
(1)
0 (r) and E

(2)
0 (r), which

correspond to the given distribution of the current density j(r). We are interested in the inverse problem
of reconstruction of the inhomogeneous correction ε1(r) to the dielectric permittivity on the basis of the

scattered field E
(1)
1 (r) in free space, which is equal, according to Eq. (4), to

E
(1)
1i (r) = − iω

4π

∫

V ′

ε1(r
′)E(2)

j (r′)G21
ji (x− x′, y − y′, z, z′) d3r′. (6)

In this case, as well as in [18–20], we assume that the multifrequency-measurement data for the transverse

distributions of the scattered-field components E
(1)
1i (x, y, z0, ω) in the plane z = z0 > 0 over the surface of

the probed medium are known.

It is natural to start solving problem (6) with the so-called Born approximation, where the unper-
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turbed probing field E
(2)
0j from Eq. (5) is substituted into the integral instead of E

(2)
j :

E
(1)
1i (x, y, z0, ω) = − iω

4π

∫

V ′

ε1(r
′, ω)E(2)

0j (r
′, ω)G21

ji (x− x′, y − y′, z0, z′, ω) d3r′. (7)

As has already been noted, the numerical solution of this three-dimensional problem has major
limitations imposed on the discretization dimension and, consequently, on the achievable resolving power.
In [17, 19], methods for reducing integral equation (7) to the convolution with respect to the transverse
coordinates were proposed. One of such methods is based on the assumption that the probing field is a
plane wave. In a medium, this field is decomposed into a sum of the components

αE
(2)
0i (r

′) = αE
(2)
0i

αT 12(κx, κy) exp
(
iκxx

′ + iκyy
′ − i

√
k2 − κ2⊥z

′
)
, (8)

with the electric-field polarization parallel and perpendicular to the incidence plane, where αT 12 are the
coefficients of wave transmission from free space to the medium with the parallel (α =‖) and perpendicular
(α =⊥) polarizations [19], k = ω

√
ε0/c, and

αE0i is the value of the unperturbed field projected in the axis i
at the origin of coordinates.

Using the formula for the convolution of the product of the function and the exponential, from Eq. (6)
we obtain the following one-dimensional equation for the depth profile of the transverse inhomogeneity
spectrum:

E
(2)
1i (kx, ky, z0, ω) = −iπω

∫

z′

ε1(kx − κx, ky − κy, z
′, ω)E(2)

0j (κx, κy, z
′, ω)G21

ji (kx, ky, z0, z
′, ω) dz′, (9)

where the elements of the tensor Green’s function in the wave-vector space (k-space) are obtained in explicit
form for an arbitrary multilayer medium by expanding the source field in terms of plane waves using the
formalism of the input impedance method [19]. Hereafter, for brevity we use the same notations for the
transverse spectra as for the functions themselves with few exceptions. The functions are identified by the
corresponding arguments. Multiple solution of Eq. (9) for each pair (kx, ky) yields the solution of the problem
in the k-space, wherefrom the desired three-dimensional distribution ε1(x, y, z, ω) is found by means of the
inverse Fourier transform.

The above-described situation takes place in the case of geomagnetic ELF and ULF probing of the
Earth’s crust with the use of the field of remote natural sources. Then, the Leontovich impedance boundary
conditions for low-frequency radio waves are fulfilled, and we can assume that the probing field in the
conducting medium is a locally plane wave propagating into the Earth along the normal to its surface, while
the Earth’s crust is a conductor with the purely imaginary permittivity ε = ε′ + iε′′ ≈ 4πiσ0/ω, which is
determined by the conductivity σ0. In the case of a homogeneous medium, the exact solution of the Maxwell
equations with the boundary conditions

Ex(z = 0, ω) = E0y(ω), Hy(z = 0, ω) = H0y(ω) (10)

on the surface z = 0 has the form

Ex(ω, z) = E0x(ω) exp(z/δ − iz/δ), (11)

Hy(ω, z) = −c (i+ 1)

ωδ
Ex(ω, z) = − 1

Z
Ex(ω, z) = H0y(ω) exp(z/δ − iz/δ), (12)

where δ = c/
√
2πωσ0 is the skin depth and Z is the impedance of the medium, which is determined

by its conductivity in the case of a homogeneous medium. A deviation of the impedance off the value
calculated for the surface conductivity indicates the presence of a subsurface inhomogeneity and is an
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input parameter in most methods of geomagnetic probing of one-dimensionally inhomogeneous geological
structures. Equations (11) and (12) are also used to solve integral equations (4) and (7) in the Born
approximation.

If the variations in the electric-field component Ex on the ground surface (z = 0) as functions of
the incident-wave frequency in the ULF band are measured by the method of two-dimensional scanning,
then, under the fulfillment of the Leontovich boundary conditions, integral equation (9) for the problem of
tomography of the Earth’s crust conductivity is written in the Born approximation as

E1x(κx, κy, ω)

=
E0x

2iσ0

κzκ
2
x
‖T 21 + κ2yk

2⊥T 21/κz

κ2⊥

0∫

−∞
σ1(κx, κy , z

′) exp
(z′
δ
− iz′

δ

)
exp

(
− i

√
k2 − κ2⊥z

′
)
dz′, (13)

where σ1(κx, κy, z
′) is the depth profile of the transverse spectrum of the conductivity inhomogeneity, and

αT 21 stands for the coefficients of transmission of the electromagnetic field from the medium to free space
for the parallel (α =‖) and perpendicular (α =⊥) polarizations.

A similar equation is written for the y-component H1y of the magnetic field:

H1y(κx, κy, ω)

= H0y

κ2x
‖T 21 + κ2y

⊥T 21

κ2⊥

(1 + i)ωδ

c2

0∫

−∞
σ1(κx, κy , z

′) exp
(z′
δ
− iz′

δ

)
exp

(
− i

√
k2 − κ2⊥z

′
)
dz′. (14)

Equations (13) and (14) are Fredholm equations of the first kind for the depth distribution of the
transverse spectral components of the conductivity inhomogeneity. One can see that the contribution of the
medium inhomogeneities to the field perturbation decreases exponentially on the skin depth δ, whose value
depends on the frequency and increases with decreasing frequency. This fact is the basis for the method
of deep ULF probing. At the same time, the integrand in Eqs. (13) and (14) contains another term, which
decays exponentially as the depth of penetration into the medium increases. This term manifests itself for
great transverse wave numbers and is related to the near-zone components of the transverse spectrum of
the scattered field.

For probing with the use of artificial sources of the probing field, three-dimensional equation (7)
in the general case ceases to be a convolution-type equation and cannot be reduced to one-dimensional
equation (9). However, it was shown in [19] that for the measurement scheme employing the rigidly connected
transmitter—receiver system, in which the distance between the transmitter and receiver is specified by the
vector δr = (δx, δy, δz), the integral equation for the electromagnetic field in the Born approximation also
has the form of a convolution with respect to the transverse coordinates x and y. This allows one to obtain
a one-dimensional integral equation for each pair of the components kx and ky of the transverse spectrum
of the scattered field by using the two-dimensional Fourier transform. This approach was implemented
experimentally as the method of subsurface microwave near-field tomography of inhomogeneities in the
ground [20]. It can also be generalized to the case of low-frequency probing of the Earth’s crust, where the
corresponding integral equation for the electric field has the form

E1i(kx, ky, z0, ω, z, δr) = 16π4

∫

z′

σ1(kx, ky, z
′)
+∞∫∫

−∞
exp(−κxδx− κyδy)

∫

z′

[
ji(κx, κy, z

′′ − z − δz, ω)

×G12
ij (κx, κy, z

′′, z′, ω)
]
G21

ji (κx + kx, κy + ky, z
′, z, ω) dκx dκy dz′′ dz′. (15)

In such a formulation, the probing field is strongly localized near the source, which ensures a better
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resolving power. However, it is difficult to develop scanning systems for sources having large sizes. For
example, the power transmission lines and pipelines, which are commonly used as low-frequency antennas,
are certainly unsuitable for this purpose. Therefore, the above-described approach can be used only for
probing subsurface inhomogeneities at relatively small depths.

Herein, when considering the problem of electromagnetic diagnostics of the Earth’s crust, we study
thoroughly the method based on solving of Eq. (14) using the data of multifrequency measurements of the
magnetic field, which significantly exceeds the electric field near the conducting surface.

Let us represent first-kind Fredholm equation (14) in concise form as

H(kx, ky, ω) =

∫

z′

σ1(kx, ky, z
′)K(kx, ky , z

′, ω) dz′, (16)

where K(kx, ky, z
′, ω) is the equation kernel.

Theoretically, it is quite possible to solve the inverse problem on the basis of this equation. However,
the experience of using a similar equation for the subsurface diagnostics in the microwave band [20] showed
that the useful signal from a subsurface object is poorly discernible against the background of noise due to
scattering from subsurface inhomogeneities. This difficulty was overcome by transforming multifrequency
data to a synthesized complex pseudopulse, in which the uncorrelated noise error and the useful signal were
isolated effectively, and this signal acquired depth selectivity:

H1(x, y, t) =

∫

Δω

H1(x, y, ω) exp(iωt) dω, (17)

where Δω is the analyzed frequency band. In Eq. (17), it is convenient to pass from the time parameter to
the parameter zs of the effective depth of the scattering element (allowing for the velocity of propagation in
the medium along the path to the scattering element and back) according to the relation

H1(x, ky, z
′, zs) = H1[kx, ky, z

′, zs = −ct/(2Re
√
ε0)]. (18)

Unlike the actual pulse, the quantity (pseudopulse) introduced in [20] is complex-valued and described
by an integral over a limited frequency range Δω. At the same time, the pseudopulse preserves such an
important property of the actual pulse as the distance selectivity (or depth selectivity, in this case). It clearly
indicates the position of the surface, as well as the contribution of the probed object in a certain range of
the values of zs. This property allows one to localize and visualize the region of scattering from the object in
the coordinates (x, y, zs). Such a region is evidently wider than the object itself and has blurred boundaries,
but the average depth of the object along the z coordinate corresponds approximately to the position of
the visualized psedopulse along zs. Information obtained by simple preprocessing of the measurement data
allows one to radically decrease the region in which the solution to the problem is found, which is of critical
importance for solving ill-posed equations of the considered type [19].

To use the above-mentioned advantages, one should employ the transformed equation, which relates
the depth profile of the transverse spectrum of the inhomogeneity and the transverse spectrum of the complex
pseudopulse and which preserves its type. In that equation, only the kernel is transformed:

H(kx, ky, zs) =

∫

z′

σ1(kx, ky, z
′)K1(kx, ky, z

′, zs) dz′, (19)

K1(kx, ky, z
′, zs) =

∫

Δω

K(kx, ky, z
′, ω) exp(−2iωzs Re

√
ε0/c) dω. (20)

The solution for each pair of the components in the transverse spectrum of the conductivity inhomogeneity
is found using the algorithm [19], which is based on Tikhonov’s generalized-residual method for complex-
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valued functions in Sobolev’s Hilbert space W 1
2 . Then, using the inverse Fourier transform in the k-space

to solve Eq. (19), we find the desired three-dimensional distribution

σ1(x, y, z) =

∫∫
σ1(kx, ky, z) exp(ikxx+ ikyy) dkx dky. (21)

One can visualize this distribution in the section by an arbitrary plane, i.e., perform tomographic analysis.

Since the conductivity of the Earth’s crust lies in a wide range, 10−5–10−1 S/m, the frequency
range Δω for solving inverse problem (19) should be chosen with allowance for the estimate of the skin
depth δ corresponding to the assumed probing depth. For example, tomography of inhomogeneities at
depths from 0.2 up to 5–7 km requires the fulfillment of the condition 0.1 < δ < 10 km, which requires
measurements in the frequency range 0.25 < f < 2500 for the conductivity σ0 = 10−2 S/m, and in the range
12 < f < 125000 Hz σ0 = 2 · 10−4 S/m for σ0 = 2 · 10−4 S/m.

2.1. Tomography of distributed inhomogeneities

We have developed an algorithm for numerical

Fig. 1. Distribution of the normalized pseudopulse
amplitude |H1y(x, y, zs = −4 km)|/Hmax.

implementation of the method of computer tomography
of subsurface inhomogeneities, i.e., reconstruction of the
three-dimensional distribution σ1(x, y, z) of the conduc-
tivity inhomogeneity in the probed medium, which is
based on solving Eq. (19), and then performed the cor-
responding numerical simulation. As the initial data for
analysis, we used multifrequency “measurements” of the
distribution of the complex amplitudes H1y(x, y, ω) of
the scattered field in the two-dimensional region over the
surface of the medium with the inhomogeneity. To use
these data in Eq. (19), their frequency dependence was
transformed to the transverse spectrum of the synthesized
pseudopulse H1y(x, y, zs).

Figure 1 shows the transverse distribution of the
pseudopulse amplitude, normalized to the maximum am-
plitude Hmax, for the Gaussian conductivity inhomogene-

ity σ1(x, y, z) = σ0
1 exp[−(x−xt)

2/Δx2−(y−yt)
2/Δy2−(z−zt)

2/Δz2], which has the parameters Δx = 2 km,
Δy = 3 km, and Δz = 1 km, and is located at the depth zt = −3.5 km in a medium with the conductiv-
ity σ0

1 = 0.01 S/m.

The numerical simulation based on solving Eq. (19) was performed following a closed-loop scheme:
the two-dimensional distribution of the scattered field near the medium surface was calculated at frequencies
of the chosen range for the specified inhomogeneity, a normally distributed random “measurement error”
with a given variance was added, the initial data (transverse spectrum of the pseudopulse) were calculated in
Eq. (19), Tikhonov’s method was used to solve the inverse problem for each pair of the spectral components,
and inverse Fourier transform (21) was used to calculate the desired three-dimensional distribution of the
conductivity inhomogeneity, which was compared with the initial distribution. In the tomography results,
which are presented in what follows, high-quality reconstruction was ensured by the random-error level 10%
in the integral metric, and the result depended only weakly on the error-level variations within the limits
±5%.

As an example, we demonstrate the advantage of converting the frequency spectrum of the signal to
a synthesized pseudopulse for the above-described Gaussian inhomogeneity. Figure 2 shows the transverse
distributions (along the x axis in the section y = yt) of the frequency dependence of the field incident on
the surface for two values of the inhomogeneity depth, zt = −3.5 and −7 km.
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Fig. 2. Distribution of the normalized amplitude |H1y(x, y, yt, f)|/Hmax of the scattered field for a Gaussian
inhomogoneity located at the depths zt = −3.5 km, zt = −7 km, and zt = −7 km with an introduced
arbitrary error (a, b, and c, respectively).

One can see that as the frequency decreases, the inhomogeneity located closer to the surface (at
zt = −3.5 km) starts manifesting itself in the signal earlier than that located deeper (at zt = −7 km), and
the signal received from the latter is significantly weaker. Evidently, it is difficult to make judgements on
depth localization of the probed object on the basis of these distributions.

Figure 3 shows the distribution of the pseudopulse amplitude over the coordinates (x, zs) in the section
y = yt. It demonstrates the possibility of approximate localization of the depth location of inhomogeneities.
The positions of the pseudopulse maxima on the axis of the effective scattering depth zs correspond approx-
imately to the depths zt of the probed inhomogeneities. Such visualization allows one to choose informative
intervals Δx, Δy, and Δzs, which determine the region of the pseudopulse quantities used for analysis, as
well as the intervals Δx, Δy, and Δz = Δzs, which determine the region where the solution is sought. These
data represent rather important a priori information for solving the ill-posed problem under consideration.

Figure 4 shows the numerical simulation results for the solution of the inverse problem, which was
found following the closed-loop scheme for the above-described Gaussian inhomogeneity at the depths zt =
−3.5 and −7 km in the vertical section y = yt. The reconstructed distributions were obtained using inverse
Fourier transform (21) of the solution of inverse problem (19). The results are presented in the form
normalized to the maximum (σ0

1 = 1).

One can see that the shapes and positions of the reconstructed inhomogeneities correspond well to
the simulated distributions. For the inhomogeneity at a depth of −3.5 km, the maximum error of the
conductivity value amounts to about 10%, and for the inhomogeneity at a depth −7 km, it is about 20%.
One can also see that as the depth increases, the reconstructed distribution becomes blurred, which is quite
natural for the ill-posed problem solved. Figure 5 shows the results of tomography in the horizontal cross
section z = zt at the depth zt = −3.5 km.

2.2. Holography of continuous inhomogeneities

Since in practice most inhomogeneities have an internally homogeneous structure, a topical task is to
solve the problem of reconstructing the shape of the surfaces of such inhomogeneities. This allows visualizing
the inhomogeneity at any aspect to the observer, i.e., solving the problem of computer holography. To do this,
it is necessary to supplement the algorithm with additional a priori information on invariance of dielectric
parameters inside the diagnosed object. Here, one can use the approach which we developed in [20, 21] for
simply connected objects in the context of microwave probing. This approach employs directly the profile
of the transverse spectrum inhomogeneity in the k-space, which was reconstructed from the solution of
Eq. (19).

In the Cartesian coordinate system bound to the medium surface, we specify the shape of the surface
of a homogeneous object (σ1 = σ0

1 =const) using the functions x1(y, z) and x2(y, z) (see Fig. 6a). Then, for
the inverse Fourier transform of this spectrum with respect to ky, we have an equation which is equivalent

435



Fig. 3. Distribution of the nor-
malized amplitude |H1y(x, y =
yt, f)|/Hmax for the Gaussian
inhomogeneity located at the
depths zt = −3.5 km (a) and
zt = −7 km (b).

Fig. 4. Simulated (a) and re-
constructed (b) distributions of
the Gaussian inhomogeneities
of conductivity (vertical sec-
tions through their centers).

Fig. 5. Simulated and re-
constructed (a and b, re-
spectively) distributions of the
Gaussian conductivity inhomo-
geneities (horizontal cross sec-
tions through their centers).

to the system of two equations for its real and imaginary parts:

σ1(kx, y, z) =
σ0
1

2πikx

{
exp[−ikxx1(y, z)] − exp[−ikxx2(y, z)]

}
. (22)

Solution of this equations yields the functions x1(y, z) and x2(y, z) which determine the desired shape of the
object surface. In principle, this equation is solvable for any value of kx and is overdetermined. Numerical
simulation shows that the best results are obtained when choosing kx ≈ 2π/L, where L is the estimate of
the transverse size of the inhomogeneity on the basis of the visualized image of the pseudopulse.

This approach can be generalized to the case where the object contains a simply connected inclusion
with the conductivity σ1 = σ02

1 =const. When seeking the shape of the inclusion specified by the func-
tions x3(y, z) and x4(y, z) in each section z =const, as is shown in Fig. 6b, we obtain a system of complex
equations for two or more values of kx:

σ1(kx, y, z) =
σ0
1

2πikx

{
exp[−ikxx1(y, z)] − exp[−ikxx2(y, z)]

}

+
σ02
1 − σ0

1

2πikx

{
exp[−ikxx3(y, z)]− exp[−ikxx4(y, z)]

}
. (23)

It should be noted that the results of tomographic analysis cannot be used directly to find the boundaries of a
continuous object. This is due both to blurring of sharp details in the process of solving an ill-posed problem
with allowance for the data error, and to fundamental limitations related to the fact that for functions with
jumps, Dini’s test for pointwise convergence of Fourier series, which represent numerical solution (21), is
violated. This leads to a distortion of the result due to the Gibbs effect. The proposed approach is a
consistent solution of the problem under consideration.
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Fig. 6. Sections z′ = const of
a continuous object (a) and an
object with an inclusion (b).

Fig. 7. Distributions of the nor-
malized amplitude |H1y(x, y =
10 km, zs)|/Hmax of the pseu-
dopulse of the scattered field for
the Gaussian inhomogeneity lo-
cated at the depths zt = −2 km
(a) and zt = −4.5 km (b).

Fig. 8. Shape of the simulated inhomogeneity of conductivity at the depth zt = −2 km (the part specified by
the function x2(y, z) by analogy with Fig. 6a) (a) and the corresponding results of the holographic analysis in
the form of the functions x2(y, z) (b) and x1(y, z) (c).

In what follows, we present the results of numerical simulation of the “holographic” method for an
inhomogeneity shaped as a parallelepiped with dimensions of 4 × 4× 2 km, which is located at the depths
zt = −2 km and −4.5 km.

Figure 7 shows the distributions of the amplitudes of the scattered-field pseudopulse. One can see
that the positions of the pseudopulse maxima along the axis of the effective scattering depth zs correspond
approximately to the depths of the probed inhomogeneities. Figures 8 and 9 present the results of holographic
analysis, i.e., the object shape found by solving Eq. (22) and specified in the form of two functions, as is
shown in Fig. 6a. It is seen that the reconstructed shape of the object at the depth zt = −2 km reproduces
the shape of the initial parallelepiped recognizably and corresponds well to its position and dimensions. In
the case of a greater depth of the object (Fig. 9), its contours are blurred, but, on the whole, the reconstructed
shape agrees well with the shape, position, and dimensions of the simulated object.

Comparing the results of the holographic analysis, which are presented in Figs. 8 and 9, with the
results of near-field holography at microwave frequencies [20, 21], one can easily see that in the case consid-
ered here, it is much more difficult to achieve a comparable resolving power (on the scale of wavelengths in
the medium). This is related to the use of a localized source, rather than a plane wave, in the process of
microwave field probing.
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Fig. 9. Shape of the simulated inhomogeneity of conductivity at the depth zt = −4.5 km (the part specified
by the function x2(y, z)) (a) and the corresponding results of the holographic analysis in the form of the
functions x2(y, z) (b) and x1(y, z) (c).

Figure 10 shows the transverse distribution of the

Fig. 10. Transverse distribution of the nor-
malized pseudopulse amplitude |H1y(x, y, zs =
−2 km)|/Hmax.

pseudopulse for the object having the same shape as in
Fig. 1, dimensions of 4 × 4 × 3 km, and a cavity with
dimensions of 2 × 2 × 1.5 km for σ0 = 5 · 10−4 S/m,
σ0
1 = 2 · 10−3 S/m, and σ02

1 = 0. In this distribution,
one can discern a low-contrast light region in its central
part, which corresponds to the position of the cavity.

Figures 11 and 12 show the tomograms of the
object-conductivity distributions in the vertical and hor-
izontal sections, which were found by solving Eq. (19) at
the level 3% of the simulated random error, which is
higher than that in the above-considered examples. A
significant enhancement of the requirements imposed on
the data accuracy for distributions with more complicated
structures is typical of the inverse problems described by
the Fredholm equation of the first kind [16]. In the fig-
ures, one can see the cavity in the obtained tomographical
images. However, significant blurring and smoothing of

its shape take place.

Figure 13 presents the results of holographic analysis based on the solution of Eq. (23).

Thus, holographic analysis can be efficient for the objects located at relatively shallow depths and
having simply connected inclusions. It allows one to make better judgments about the structure of an object
than tomographic images, such as those in Figs. 11 and 12. The problem becomes more complicated for the
deeper objects with inclusions, and requires a high accuracy of the input data, which is hardly achievable
in practice.

It is important to discuss the issue of the influence of the error in the Born approximation, which
was used to derive Eq. (19), on the analysis results. It is known that the Born approximation is fulfilled if
the scattered field is low compared with the probing field. This is directly related to the applicability of the
method described.

Figure 14 shows an example of calculating the distributions of the electric and magnetic fields for
the object having almost the same structure as that shown in Figs. 11–13, i.e., an inhomogeneity having
dimensions of 4× 4× 3 km and a cavity with dimensions of 2× 2× 1 km, which is filled with the material
of the external medium. Figure 14a presents the calculation results for a medium with a relatively high
conductivity σ0 = 10−2 S/m at frequencies of 1 and 10 Hz, for which the attenuation factor δ−1 was equal to
5.0 and 1.6 km−1, respectively. The inhomogeneity conductivity is assumed equal to the conductivity of the
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Fig. 11. Simulated distributions
of conductivity inhomogeneities
(vertical section through the in-
homogeneity center) (a) and
the result of the reconstruction
based on the solution of the to-
mography problem (b).

Fig. 12. Simulated distributions
of conductivity inhomogeneities
(horizontal section through the
inhomogeneity center) (a) and
the result of the reconstruction
based on the solution of the
tomography problem for z =
−2 km (b).

medium (σ1 = σ0). One can see that the fields scat-

Fig. 13. Holographic image of the inhomogeneity
with a cavity. A combination of images of the
outer boundary of the object, which is described
by the function x1(y, z), and the inner boundary
of the cavity, which is described by the function
x4(y, z).

tered inside the inhomogeneity excite the external fields
weakly, which allows one to use the Born approximation
rightfully to solve the problem. Figure 14b shows the
results for a comparatively weakly conducting medium
(σ0 = 2 · 10−4 S/m), which, however, contains an ob-
ject whose conductivity σ1 = 2 · 10−3 S/m is an order of
magnitude higher. In this case, it is reasonable to use
higher frequencies (Fig. 14 shows the results for frequen-
cies of 10 and 100 Hz with attenuation factors of 11.2
and 3.6 km−1, respectively). Despite the smaller value
of the medium conductivity, compared with that used in
Fig. 14a, a noticeable perturbation of the magnetic field
occurs inside the object at a frequency of 100 Hz, i.e.,
a certain error is possible during the calculations in the
Born approximation in this case.

Despite the above-indicated possibilities of opti-
mization of the measurement parameters, the conductiv-
ity of inhomogeneities of the Earth’s crust varies in such
a wide range that it is not always possible to ensure the
fulfillment of the conditions of applicability of the Born
approximation. In this connection, a topical task is the development of algorithms that are free of such
limitations.

3. SOLUTION BEYOND THE BORN APPROXIMATION

Solution of the initial three-dimensional nonlinear problem on the basis of the dual-regularization
method [9–11], which was successfully used for solving a simpler problem in the case of media with a
one-dimensional inhomogeneity distribution seems the most consistent approach. However, this approach
requires calculations of tens of thousands of three-dimensional field distributions, which are similar to those
shown in Fig. 14.
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Fig. 14. Normalized (to maximum) amplitudes of the electric (b, d, f, and h) and magnetic (a, c, e, and g)
fields of a plane wave in a medium having the conductivity σ0 and an object with the conductivity σ1. Panels
a, b, e, and f correspond to the case where σ0 = σ1 = 10−2 S/m, and panels c, d, g, and h, to the case where
σ0 = 2 · 10−4 S/m and σ1 = 2 · 10−3 S/m. The radiation frequency f is equal to 1 Hz (a and b), 10 Hz (c–f)
and 100 Hz (g and h).

However, in many cases, one can find the correction to the Born approximation on the basis of the
iterative solution of the nonlinear equation, which starts with the distribution of the quantity σ0

1 found in
the Born approximation. The electric field at the nth step of the iterative process has the form

E1(r) =

∫

V ′

σn
1 (r

′)

{+∞∫∫

−∞
exp[iκx (x− x′) + iκy (y − y′)]

× [E
(2)
0j (r

′) + E
(2)
1j (ε

n−1
1 , r′)G21

ji (κx, κy, z, z
′) dκx dκy

}
dr′, (24)

where σn
1 is the conductivity at the nth iteration, and εn−1

1 is the dielectric permittivity at the (n − 1)st
iteration. If we pass to the spectrum with respect to the transverse coordinates, we obtain the equation

E1i(κx, κy, z) = 4
{∫

z′

{
σn
1 (κx − kx, κy − ky, z

′)E(2)
0j (kx, ky, z

′)

+
16π2

ω

+∞∫∫

−∞
σn
1 (κx − kx, κy − ky, z

′)
∫

z′

σn−1
1 (κ′x − kx, κ

′
y − ky, z

′′)E(2)
0k (kx, ky, z

′′)

×G22
kj(κ

′
x, κ

′
y, z

′, z′′) dκ′x dκ
′
y dz

′′G21
ji (κx, κy, z, z

′)
}
dz′′

}
, (25)

which is one-dimensional only in the first, Born, approximation, when it includes the first term solely. Basi-
cally, solving three-dimensional equations (24) and (25) at each step requires a lesser amount of calculations
than in the case of application of the methods similar to dual regularization [11], but no absolute convergence
of such an iterative procedure is guaranteed in this case. Moreover, even in the case of convergence, the
number of steps required to achieve it, can be very great. However, there is still a way allowing one to find
the correction to the Born approximation on the basis of Eq. (25), while staying within the framework of
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solving the one-dimensional equation. To this end, one should substitute σn−1
1 for σn

1 into the second term
in Eq. (25). Then it becomes a simple correction to the scattered field on the left-hand side of Eq. (25):

E1i(κx, κy, z) = 4
{∫

z′

[
σn
1 (κx − kx, κy − ky, z

′)E(2)
0j (kx, ky , z

′)

+
16π2

ω

+∞∫∫

−∞
σn−1
1 (κ′x − kx, κ

′
y − ky, z

′)
∫

z′

σn−1
1 (κ′x − kx, κ

′
y − ky, z

′′)E(2)
0k (kx, ky, z

′′)

×G22
kj(κ

′
x, κ

′
y, z

′, z′′) dκ′x dκ
′
y dz

′′
]
G21

ji (κx, κy, z, z
′) dz′

}
. (26)

Equation (26) is a Fredholm equation of the first kind in the form of Eq. (19) and can be solved in a similar
way for each pair of the spectral components. Such a method can yield adequate corrections to the Born
approximation without using high-performance computers.

4. CONCLUSIONS

In this work, we have developed methods for computer tomography of distributed conductivity in-
homogeneities and for holography (determination of the surface shape) of continuous inhomogeneities and
tested these methods by numerical simulation. The methods are based on a mathematically consistent ap-
proach, which does not use model representations and parametrization. Most of the results were obtained
using the theory of electromagnetic wave scattering in the Born approximation. Approaches allowing one
to go beyond this approximation have also been proposed.
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