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  A statistical analysis is presented of intercomparison results of simultaneous 
measurements of atmospheric boundary layer temperature profiles using three 
independent methods: radiometric, radioacoustic, and in situ. The data allowed 
the evaluation of the mean square error of each of the methods individually and 
the optimization of the algorithm for retrieving temperature profiles from radiometric 
data by minimizing the mean square error. 

I. INTRODUCTION 

One of the current problems of the development of contemporary methods and technological means of 
obtaining meteorological information is the creation of remote-sensing methods and instruments for 
measuring atmospheric temperature profiles. In particular, one of these methods is radiometric based on 
the measurements of thermal emission or the atmosphere in the millimeter wavelength band with a 
subsequent reconstruction of temperature profiles from the radiometric data. The radiometric method of 
reconstruction of the temperature profiles from thermal emission measurements at frequenciesin the 
absorption band of molecular oxygen with a center at 60 GHz was developed for more than three 
decades beginning with the works [6-10, 12, 15, 16], where measurements  on the wings of this band 
were used to reconstruct  profiles up to heights of few kilometers. In above works, the primary method used 
the statistical dependence between satellite measurements and meteorological observations to solve the 
problem of regularization that arises in ill-posed inverse problems that are reduced to Fredholm integral equa-
tions of the first kind. 

In [2, 4, 11], it was shown that such an approach does not take into account boundary-layer 
characteristics both from the point of view of the information content of the measurements and from the 
point of view of the solution of the inverse problem. For measurements on the slope of the frequency 
spectra of oxygen, temperature variations at differed heights of the atmospheric boundary layer lead to 
insignificant increases in the radio brightness temperature (as a rule, this is one hundredth or one 
thousandth of a degree). On the other hand, statistical method for solving the inverse problem do not take 
into account the characteristics of the boundary layer that are associated with strong temperature changes 
at various heights in the boundary layer. 

To solve the problems stated above, in [4] it was proposed, first, to use angular observations at fre-
quencies close to the maximum of the oxygen band (60 GHz) to measure radiation that is emitted inside the 
boundary layer; secondly, a method for solving the inverse problem was developed, based the rigorous 
theory of ill -posed problems of Tiknohnov, which takes into account the specific characteristics of 
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the inverse problem in [2, 11] this method was successfully applied for retrieval of the temperature profile 
from angular measurements with the help of a specially developed radiometer. The high sensitivity of this 
wide-band radiometer, the low level of influence of side lobes, the minimum error level, and a calibration 
method based on the creation of a large contrast in temperature between calibration standards, one of 
which was the temperature of the near-surface layer, lead to a measurement accuracy of 0.05 K. This ac-
curacy is necessary for the effective reconstruction of the majority of types of vertical temperature 
distribution in the boundary layer, even elevated inversions. Comparison with direct measurements con-
firmed the accuracy of the method. 

The vertical resolution of the latter method essentially depends on the width of the directional diagram 
of the radiometer antenna. In particular, the radiometer (width of the directions diagram is θ), used in the 
comparison described further, has a vertical resolution of 50 m up to a height of 300 m and is of the order of  
100 m at heights of 300-600 m. 

In the given work, results are given of an experiment of the field variations of a radiometer that is ca-
pable of working automatically during a sufficiently infrequent and simplified procedure of automatic cali-
bration. 

From November 1996 to March 1997 at the Boulder Atmospheric Observatorv (USA) a comparison was 
made between several methods of measurement of temperature profiles of the atmospheric planetary 
boundary layer (PBL) [1 3, 14]. In these investigations, remote and in situ instruments of the National Oceanic 
and Atmospheric Administration (NOAA, USA) vere used; a radioacoustic sounder, in sifu sensors placed 
on a meteorological tower, radiosondes, and also a Russian scanning radiometer in the millimeter 
wavelength region (MTP-5). The in situ sensors were placed on the I'OO-m high meteorological tower at 
the levels of 10, 50, 100, 200, and 300 m. These were platinum resistance thermometers with a nominal 
temperature measurement accuracy of 0.2 K, with data being recorded every 15 minutes. The radioacoustic 
sounding system (RASS; operated at the frequency of 915 MHz, in the height interval from 100 to 615 m 
with a vertical resolution of 60 m and a nominal accuracy of 1,0 K. The information from the RASS was 
available every hour; however, it should be noted that the radicacoustic data were not sufficiently reliable 
for all meteorological conditions; therefore, only about 20% of these data were used for our comparisons. 
The Russian scanning radiometer MTP-5 had the following basic characteristics: center frequency 59.8 GHz; 
total bandwidth 4 GHz, sensitivity 0,04 K for an integration time of 1 s; scanning step 90; frequency of 
measurement 5 min [11, 14]. The radiometric data were reliable for all meteorological conditions; during 
the entire time of comparisons, there was no case when the radiometric data were missing. The fist results of 
the comparisons showed a high degree of similarity between data that were obtained by different methods 
[13, 14]. A high degree of reliability and accuracy of the original information (100 temperature profiles 
obtained by three methods simultaneously and 2000 profiles by the radiometric method and from mea-
surements on the meteorological tower) allows a detailed analysis of the retrieval accuracy of planetary 
boundary layer temperature profiles confirmed by comparison with results of other independent 
temperature measurements. 

The most important feature of the analysis of the retrieval accuracy of temperature profiles is the fact 
that statistical analysis of difference characteristics allows the evaluation of the standard deviation of each 
of the three methods separately)- from the true temperature profile. Analogous to  analysis of the three 
statistical ensembles, it is possible, by solving the direct problem, i.e., by calculating the radio brightness 
temperature from the data of the other two methods and then comparing these calculations with the data from 
the scanning radiometer, to obtain a realistic evaluation of the mean square error of the measurements of 
the MTP-S radiometer. Finally, this allows the optimization of the method for retrieving temperate pro-
files to obtain the minimum mean square error of reconstruction. 
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2. METHOD OF RETRIEVAL OF TEMPERATURE PROFILES 

Retrieval of the temperature profile is based on the solution of the equation that relates temperature 
profile T(h) with the brightness temperature of the thermal emission of !he atmosphere TB measured at 
the frequency of 60 GHz as a function of the angle θ: 
 

                           T T                                       (1)  h K h dh T h eB
h( ) ( ) ( , )

cos
( ) /cosθ θ

θ
γ γ θ= ≅

∞ ∞
−∫ ∫

0 0

1 dh

where K is the equation kernel and γ the absorption coefficient at 60 GHz. The evaluations [2,6,11] show 
that we can neglect the dependence of γ on temperature and pressure within the atmospheric boundary 
layer. Then the equation assumes a simple form represented by the right-hand side of (1). Nevertheless, in 
the first approximation, the algorithm of solution takes into account this dependence and, as needed, 
permits an iterative procedure for solution of nonlinear equations, which, as has been shown is not nec-
essary. 

By considering the width of the directional diagram of the scanning radiometer (6°), an algorithm was 
developed to take into account the difference between antenna and brightness temperatures. The antenna 
temperature is represented as the convolution, with respect to angle, of the brightness temperature with 
the antenna pattern 
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The latter integral on the right-hand side of Eq. (2) forms a new kernel K' in the equation for the antenna 
temperature, which is also an equation with constant limits of the type of Fredholm equation of the first 
kind. 
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We now consider methods of solving the equation. 
 
Tikhonov’s Method 
The basic approach to solving (3) as well as Eq. (1) in [2, 4, 11], w\as based on the application of 

Tikhonov’s principle of the generalized residual (see [5], p. 101] which uses largely general information 
on the quadratic summation of the exact solution and its derivative. The principle solves the problem for the 
class of continuous functions and corresponds well with the characteristics of the problem under consid-
eration. 

We transform (3) into operator form 

                                                               K                                                                        (4) ′ =T TB
δ

 

where TB is a vector or data obtained with some error, the measure of which in Tikhonov's method is the 

integrated error δTB, defined as                 
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where TB is the right-hand side of (4), which corresponds to the exact solution T(h), 
2

2L
x  is the norm 

of the function x in the space L2, [5], and θ0
max is the maximum value of θ0, which, in the given case, is 

close to π/2. 
In Tikhonov's method [5], the approximate solution minimizes the smoothing functional 

                                     M T T T TB
L

W
α δ α( ) = − +K

2
2
1

2
2  ,                                                        (6) 

i.e. by minimizing the functional, it is possible to find the solution. In the relations mentioned above 
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designates the norm of the function T(h) as an element of the functional space W2
1 [5], and hmax is the 

height of the upper boundary layer in which the solution is sought. The problem of minimization of a con-
vex functional, such as (6), after she corresponding discretization leads to its well-studied finite-
dimensional analog. This problem, from a calculational point of view, is a problem of quadratic 
programming, and can be solved by standard gradient methods. In the present work, the method of 
conjugate gradients is applied, which is described, for example, in [1]  (in [5], its algorithm is given in 
FORTRAN). The numerical realization of the method, which in the present work is written in Borland 
Pascal 7.0, solves the problem in 0.5 s on an IBM-Peniium-200 PC. 

The regularization parameter α in the second term of (6) determines the degree of smoothness of the 
approximate equation, it is precisely this stabilizing term that ensures convexity, and consequently, the 
possibility of minimization of the functional and solution of the equation, The solution obtained is selected 
from the set of functions that.satisfy the original ill-posed equation, and is minimal in the sense of the 
norm of the stabilizing term W2

1 that contains the function itself and its derivative, i.e. a condition is re-
alized of some compromise between minimization in absolute value and smoothness of the originl func-
tion. As shown in [5], the regularization parameter α is uniquely connected with the integral measure of 
the data error (by a number) and diminishes with decreasing level of error, but more slowly. This is a 
large advantage of the method of the generalized residual. In addition, with increasing accuracy the role 
of the second stabilizing term in (6) gradually decreases. The parameter α is found as a root of the one-
dimensional nonlinear equation of the generalized residual 

                                                   ρ α δα δ( ) ,= ′ − − =K T TB
L2

2
2 0                                        (7) 

 

where Tα is the function that minimizes functional (6), i.e., the algebraic equation (7) is solved simulta-
neously with the functional equation (6). The meaning of (7) is that the norm of the residual of the solution 
obtained must be as accurate as the norm of the error, since there is no reason to minimize the departure 
from the measured data beyond the limits of the error level. The parameter of the effective error δ enters 
into Eq. (7) and must be determined a priori from the specific conditions of the solution of the problem. 
This parameter must include all components of measurement and interpretation errors. In particular, δ 
must include the measurement error δTB, both random and systematic components, and also the error in 
the kernel δh, which includes the error of discretization for numerical solution and the possibility of inac-
curacy in the approximation of the corresponding functions 
 

                                                    δ  ≤ (δTB  + δh)δ2
2

2

= −K h B L
T T 2                                      (8) 

 
In Tikhonov's method, the values of the parameters entering into (8) must represent the corresponding 

maximal estimates in the class of possible realizations of the original function The parameter α, and 
consequently, the degree of smoothness of the solution, is connected with the effective error parameter δ. 
The 
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latter circumstance is one of the main merits of the method, since the investigator's subjectivity is carried 
over from the realm of interpretation of experimental data to the evaluation of the error of real measure-
ments. Since the error always contains some uncertainty, there is a possibility of choosing a strategy of 
solution. Thus, if the problem is posed of automatically excluding nonexistent details in the solution, it 
is better to accept the error estimate with some excess, which, of course, can lead to the smoothing of 
some real line-structure details. If in solving the problem it is more important to present and not to miss 
these details, then one must accept the least error from a region of its possible values. In this case, however, 
the appearance in the solution of really nonexistent (false) details becomes possible. A proper evaluation 
of the errors gives the optimal solution in the sense of Tikhonov's method. After determination of δ, the 
procedure of obtaining the final results becomes formal. 

A very important advantage of the method of the generalized residual in comparison with other well-
known methods is that as δ tends to zero in the integral metric (i.e., in the metric where the norm is the 
maximum modulus), the approximate solution converges uniformly to the exact one, although as a rule, 
in contrast to well-posed problems, the speed of convergence is not proportional to a decrease in δ, but 
slower. To evaluate the errors, the uniform convergence allows the use of elementary numerical experi-
ments with typical or extremal initial distributions These experiments are impossible to do in cases that 
have integral or mean-quadratic convergence. 

The parameter δh is determined from numerical modeling, and the problem of creating an effective 
algorithm is its minimization to a level that is negligibly small in comparison with measurement errors. 
Tikhonov's method [5] also examines the role of possible inconsistencies on the right-hand side of equa-
tions of the type (3), which leads to some additional contribution to the effective error. The contribution 
does not exceed the level of measurement error. In the present work, since the effective error is nonetheless 
the parameter that we seek to minimize the mean square retrieval error over the ensemble of data, we do 
not dwell on the introduction of this component. 

The numerical modeling shows that significant improvement in the accuracy of reconstruction can be 
obtained if the equation is solved, as the departure from a sufficiently close first approximation to an exact 
solution, which must belong to a class of functions in which the solution is sought. In this case, the right-
hand side of Eq. (3) represents the departures of measurements of brightness temperature from calculations 
that use the first approximation. 

The Exact Solution for a Linear Profile 

There exist simplified approaches to the solution of equations of the type ( 3 )  that are based on the ap-
plication of various approximations of the solution by well-known functions, on the use of series expan-
sion in powers of the arguments or in eigenfunctions of the kernel bounded by a few of the first terms. 
The simplest method of reconstruction of the temperature profile is to use the exact solution of (1) for a 
linear temperature profile 

                                                   T h T
dT
dh

h( ) = +0                                                          (9) 
 

In this case the solution is written, according to [3|, as 

                                  T h T h h hB eff eff( ) ( ),
cos

= = =
θ

γ
,                                              (10) 

 

where heff is the effective thickness of the layer where, at the given angle, the thermal emission is basically 
formed (skin layer thickness). Ic is seen that the linear profile is the eigenfunction of the kernel of (1). 
The application of (10) to the solution of the problem can be justified by the fact that a typical temperature 
distribution in the troposphere is usually close to linear. 
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The Exact Solution for a Quadratic Profile  

It is possible to advance still farther in the expansion of the solution in powers of height and to obtain 
an exact solution for a quadratic profile 
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dh
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 From (12) it is seen that the exact solution for a linear profile (10) is partially correct beyond the limits 
of its applicability, since it enters as the first term into (12), but the term containing the first derivative is 
missing in (12); and the series continues with the term that contains the second derivative. The solution 
for a quadratic profile graphically illustrates the incorrectness of the inverse problem, which requires the 
calculation of the second derivative from experimental data. 

3. RESULTS OF STATISTICAL ANALYSIS 
The methods described in the previous section were used for the reconstruction of profiles and the 

subsequent statistical analysis based on three ensembles (number of measurements N = 100) of vertical tem-
perature profiles: measured by sensors on the meteorological tower Ttw, by the radioacoustic sounder 
(TRASS) radiometric data (TR), and also three ensembles of brightness temperature: calculated from 
temperature profiles, measured by sensors on the meteorological tower (TB,tw) and by the sounder (TB, RASS), 
and measured by the scanning radiometer (TB,R). For calculations of the brightness temperature which is 
especially essential at high zenith angles, data from the meteorological tower and the sounder were 
supplemented by a linearly decreasing temperature profile with a standard gradient of 6.5 K/km, which 
corresponded to the largest decrease of the calculated brightness temperature from radiometric data. 

Each of the three ensembles is characterized by independent errors in the determination of the true tem-
perature (δTtw, δTRASS, and δTR) or brightness temperature (δTB, tw, δTB,RASS, and δTB, R) as function of 
height or zenith angle, respectively. Their desired statistical characteristics are the mean values (<δT>, 
<δTB>) and dispersions (σT2, σTB

2) and also the average dispersion with respect to zenith angle of the 
random component of the error of Tikhonov’s method (5) δTB

2. From the experimental data it is possible 
to obtain an estimate of the statistical characteristics of the ensemble that is associated with the desired 
values 
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The systems of Eqs. (13) and (15) relative no the mean values of the errors are, unfortunately, linearly 
dependent, and allow one to obtain only estimates of the mean temperature difference, as a function of 
height for each pair of the three different methods. Taking into account, however, the fact that this de-
pendence (or dependence on zenith angle for brightness temperature) is common to all three methods, it 
is possible to assume that the absolute maximal difference of the systematic errors will not be worse than 
the maximal systematic departure of the worst of two pairs of methods. It should also be noted that the 
elimination of the systematic errors is not as serious problem as the minimization of the random errors. 

Dispersions of the random errors can be determined for each of the three methods by solving the system 
of Eqs (14) and (16): 
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The dispersion of errors of Tikhonov's method σTB
2 is determined from (5) by integrating, with respect 

to zenith angle, the dispersion σTB,R
2(θ0) obtained from the first relation of (17).  

Figure 1 shows the errors of radiometric measurements. One can see that the level of random errors 
during continuous measurements in the automatic regime turned out to be higher than the nominal mea-
surement accuracy of 0.04 K. The mean square random component of the error of Tikhonov’s method 
of σTB, determined from the data presented in Fig. 1, was 0.5 K. The average departures of the measured 
brightness temperatures from those calculated using temperature profiles measured on the meteorological 
tower turned out to be small in comparison with the random errors. For the RASS data, the systematic 
departure is larger, which is caused by, as will be shown below, poor data quality. Figure 2 shows the 
histogram of the probability density of the distribution of errors of Tikhonov's method in 0.1 K intervals. 
This histogram assumes that temperature profiles from the RASS (2) or from the meteorological tower (1) 
are exact (the relative number of mean square departures, with respect to angle, of the measurements of 
brightness temperature from calculations is based on measured data from RASS or from the meteorological 
tower). 
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Fig. 1.  The errors of rsdiomciric measurements. 
(1) σTB; (2) ∆TB,R-tw; (3) ∆TB,R-RASS 
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Fig.2. Histogram of the probability density of the distribution of errors of 
Tikhonov's method for temperature profiles reconstructed from (1) 
meteorological tower data and (2) RASS data. 

 
The position of the maximum of the probability density distribution of the measurement errors for the 

tower and to RASS (0.4 K) was found to be close to the value of the standard deviation determined 
above for Tikhonov 's method (0.5 K), but the RASS measurements were different in quality, which was 
obviously connected with the noise that depends on the wind speed. The higher level of the radiometric 
measurements errors in comparison with the nominal accuracy (0.04 K), aside from the simplified 
calibration procedure, may be due to the existing cases of rapid temperature changes and to the errors in the 
standard temperature sensors caused by radiation. In the calibration method, the output of the sensor was 
considered exact, although, in the present case, as shown by independent in situ measurements, the error of  
the sensor (0.1-0.2K) invariably affected the calibration. This systematic error with respect to zenith angle is 
present in every measurement, but in the ensemble, it appears as random. 

The possibility of determining the mean square error in the retrieval of temperature profiles permitted 
the optimization of the retrieval algorithm. It was found that the optimum choice of error for Tikhonov's 
method was δ=σTB=0.4K. For a smaller value, the accuracy of the solution somewhat increased 

at h < 150 m, but decreased at h > 150 m. Conversely, with increasing δ, the accuracy of the solution 
increased h > 150 m, but was reduced in the surface layer. The optimal upper boundary (height) of the 
layer (hmax) in which retrievals are practical (the interval in which we have a solution) is 1.5 km, but in 
integration with consideration of a model temperature profile should be carried out to a height of 5 km. The 
optimal initial approximation, in the form of the departure from which a solution is sought, was found to 
be a linear profile. Below 500 m, this profile corresponds to the exact solution of the linear profile equation 
(10) using brightness temperature measured at zenith. Above 500 m, the initial approximation profile 
was assumed to be linear, decreasing with a gradient of 6.5 K/km. The mean square departure of brightness 
temperatures from those calculated in the first approximation is about 2 K for the maximal value of the 
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Fig. 3. Root mean square error of three independent methods of temperature determination: (1) radiometric; (2) 
in situ measurements on meteorological tower, and (3) radioacoustic. 

Fig. 4. Difference of systematic errors in the determination of temperature between the radiometric and two 
other methods: (1) ∆TR-tw; (2) ∆TR-RASS. 

mean square variation of 10 K, which almost exactly corresponds to the temperature variation in the layer 
0 – 500 m. 

The numerical experiments showed that taking into account the form of the directional diagram improves 
the retrieval accuracy in the surface layer (0 to 50 m); this, however, cannot be found from available data, 
because temperature measurements were not taken within this interval. 

Simple algorithms of solution were investigated for linear and quadratic temperature profiles. It was 
found that the method based on the exact solution for a quadratic profile (12) has a large error even for 
the spline approximation of the measured dependence of the brightness temperature on zenith angle. 
Its error exceeded 1 K at a height of 100 m. 

A simple method based on the exact solution for a linear profile (10) was also tested on the available 
data. In this case, temperatures obtained from (10) were interpolated by cubic splines in the intervals be-
tween levels of the formation of thermal radiation for the corresponding zenith angles. For a relatively 
moderate accuracy of measurements of brightness temperature, the mean square error of this method was 
found to be close to the errors of Tikhonov's method. However, it should be noted that this is a result of 
closeness of the average temperature distribution to the linear profile, because there is a natural advantage 
of (10) as an exact solution for this case. In the presence of inversions, the systematic error of solution (10) 
quickly grows, and complex profiles cannot be reconstructed, in principle, with its help. Tikhonov's method 
has a guaranteed convergence for any distribution. 

As already noted, in the case when the assigned error for solution in Tikhonov’s method is substantially 
smaller than the real one, which inevitably occurs in its distribution shown in Fig 2, false features of the 
solution can appear in the form of large-amplitude departures, which naturally make worse the statistical 
errors of retrieval. When the error parameter prescribed in Tikhonov's method is increased up to the 
level that includes the maximal possible departures, the real details in the solution are smoothed and the 
mean square error of retrieval grows for this reason alone. The effective solution of the problem was found 
by including the algorithm of control of the rise of large deviations. This algorithm checked a departure 
from results of the exact solution for the linear profile (10), which automatically did not amplify the errors 
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of the data provided. If this departure exceeded 0.4K, then solution (10) was used instead of Tikhonov's method. 
For the prescribed error of Tikhonov's method of 0.4K, this took place approximately in 20% of the cases, but 
the application of this algorithm allowed the reduction of the mean square retrieval error by a factor of two. 
Method (10) was applied to she algorithm of solution in those rare cases when the departure or the brightness 
temperatures from the first approximation, as determined from relation (10), was less thin the prescribed level of 
error ( i n  this case, according to Tikhonov's method, the solution is already found). 

Figure 3 presents the basic result of the work, the mean square errors of three independent methods 
of determining of the temperature up to the height of the tower. It is seen that the radiometric method was 

 found to be most  accurate below 130 m and above 250 m. Its root mean square error in the lay er 0 to 300 m does 
not exceed 0.6K. It is also seen, that the error of the in situ sensors on the meteorological tower was 
substantially larger, and it was basically random, as the curves in Fig. 4 show. This figure shows the difference 
in systematic errors between the radiometric and the other two methods (as already noted, the third difference is 
determined from the other two). 
 The systematic and random errors of the RASS data, as can be seen from Figs. 3 and 4, exceed the 
errors of the other two methods. We note that the best method (Tikhonov's), from the point of view of minimizing the 
mean square error, perhaps is not optimal for reconstruction of complex temperature profiles in the atmospheric 
boundary layer, which must be the subject of further investigation.! 

Naturally, the question arises about the accuracy of the evaluation of the mean square errors in the 
determination of temperature by the three methods from the solution of the system (17). The sampling error of 
the mean square difference for each of the three terms obeys the χn

2 distribution, where n |= N= 300 is the 
number of degrees of freedom, equal to the sample size under the assumption of uncorrelated measurement 
errors. For N > 30, this distribution practically does not differ from normal, and for the root mean square 
temperature deviations, the sampling error is about 0.1 K, which confirms the validity of the basic conclusions of 
the work. 

4. CONCLUSIONS 

The statistical analysis of the results of measuring temperature profiles in the atmospheric boundary 
layer by three independent methods (radiometric, radioacoustic, and in situ sensors) allowed the determi-
nation of the root mean square error of each of the methods. The analysis also allowed us to optimize the 
algorithm for the retrieval of temperature profiles from radiometric measurements, based on Tikhonov's 
method of the generalized residual by means of minimization of its mean square error. I 

The radiometric method was found to be not inferior in accuracy to the direct measurements of air 
temperature on a meteorological lower. Its root mean square error in the layer 0 to 300 m does not exceed 
0.6K. The RASS accuracy was significantly worse, and its working capabilities were seriously limited by 
weather conditions. The data from the sensors on the meteorological tower had errors comparable with 
the radiometric method, and they cannot be considered in analysis as completely accurate. 

Problems of further development of the radiometric method are ( 1 )  the extension of the height range 
of the retrieval of temperature profiles by including measurements at frequencies lying on the slope of 
the absorption band of oxygen and (2) the improvement of the retrieval algorithm to take into account 
the characteristics of the boundary-layer stratification. 
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