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Abstract 
 
The considered inverse problem of electromagnetic scattering is widely applied in 

the subsurface profiling of media permittivity. In previous works, mainly the non-
linear integral equation for the scattered field has been in use. It has been solved in 
the Born approximation or, sometimes, iteratively – beyond this approximation. 
However, the solution of this ill-posed problem at each step of iterations faced diffi-
culties. To overcome these difficulties, we propose to use the new approach based on 
the Lagrange formalism applied to initial differential equations (Maxwell’s equa-
tions). That gives a possibility to obtain the solution of one-dimensional inverse prob-
lems of scattering beyond the range of applicability of the perturbation theory. Based 
on the developed theory, the solution algorithm has been worked out and applied to 
the simplest one-dimensional problem of low frequency geomagnetic profiling of 
conductivity of the earth crust. 
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1. INTRODUCTION 
 
The problem of one-dimensional electromagnetic  
geomagnetic sounding has been formulated firstly by 
A.N.Tikhonov [1] for the ultra low-frequency sound-
ing of earth crust and solved by him for a discrete 
multilayered distribution of media conductivity. The 
frequency dependence of the effective depth of the 
received signal formation (skin-depth) of measured 
fields was in use in this method, applied further in the 
magnetotelluric exploration. The depth of sounding 
achieves several kilometers at lowest frequencies.  

For the case of a continuous conductivity profile, in 
frameworks of the one-dimensional electromagnetic 
perturbation theory, this problem has been reduced to 
the solution of the non-linear integral equation of the 
1-st kind that has been solved iteratively using Tikho-
nov’s method of generalized discrepancy in [2,3]. 
Here we develop the dual-regularization approach [4].  

2. THEORY 

2.1. ONE-DIMENSIONAL INVERSE PROBLEM OF 
SCATTERING 

If the distribution of a probing electric field in the 
non-perturbed medium with the permittivity 0ε  

is , the total field  for the same medium 

with inhomogeneities 

( )0E r ( )E r

1( )ε ′r can be expressed as a 
sum of probing and scattered fields and obtained itera-
tively from the Fredholm equation of the 2-nd kind 
[5,6]:  
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beginning with the Born approximation 
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where ω is the cyclic frequency. The Green tensor G  
for homogeneous or multilayer media can be obtained 
using the input impedance formalism [5,6]. Equations 
(1,2) can also be used to solve the inverse scattering 
problem [6]. In the case of one-dimensional media, 
when plane waves are used as the probing field, the 
total field is expressed as 

( ) ( )exp( )yz i kxk x i y= +E r E  and the problem is 
much simplified and reduced to the equation 
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In the ultra low frequency band, the analysis can be 

simplified further. The approximation of Leontovich’s 
boundary conditions is valid in this band, so the field 
in the medium can be considered as a plane wave with 
components Ex, Hy of electric and magnetic field re-
spectively that propagates in the nadir direction rela-
tive the earth surface. Also, the permittivity at low 
frequencies is determined by the conductivity σ as 

4 /i iε ε ε π σ ω′ ′′= − ≈ − . Maxwell’s  equations for 
the complex amplitudes of electric and magnetic field 
are written as  
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Fields are measured at the surface level in dependence 
on frequency:   
 

0( 0, ) (E z E )ω ω= = , 0( 0, ) (H z H )ω ω= = .   (5) 
 
These data can be compared to frequency depen-
dences for the homogeneous medium with the con-
ductivity σ(z) = σ(0) = σ0: 
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where 0/ 2cδ πωσ=  is the skin-depth. Using differ-
ences ΔH = H0 – H0, ΔE = E0 – E0 of these fields in 
the first guess at the solution of the non-linear integral 
equation (3) or of the corresponding equation for the 
magnetic field, it is possible to solve the (3) iterative-
ly, beginning with the Born approximation of pertur-
bation theory. Results of the numerical study [3] have 
demonstrated serious limitations of such approach for 
large perturbations (typical in geology structures), 
when the Born approximation (first guess of iterative 
method) is inapplicable. To overcome these restric-
tions of perturbation theory, we develop here the new 
method, based on the theory [4,7], applied to initial 
Maxwell equations in its simplest version. 

2.2. METHOD OF DUAL REGULARIZATION 
Let us introduce new variables: 
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Then the inverse problem for (4) in the range z0 ≤z <0 
lead to the equivalent problem of minimization  
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2= 4 /a cπwhere . It is possible to prove that this 
problem tion (there is no uniqueness). De-
note the value of minimizing functional 0

 has a solu
I  at this 

solution as 0I ∗ .  In the considered nonlinear problem 
it is necessary to use the modified Lagrange function 
in the dual regularization of (7) [7]. It can be build as  
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he dual problem (Tikhonov regularization with the T

regularization parameter α) of maximizing the con-
cave functional on the Hilbert space 4

2 1 2( , )L ω ω : 
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Fig. 1.   Numerical modeling of the retrieval of the conductivity profile. Left, “measured data” (Im (ΔH)) in 
arbitrary units versus frequency f = ω/2π at the rms of the random error δH0 = 1%; right, 1 – initial profile, 2 – 
retrieval results.  

Fig. 2.    The same, as in Fig. 1, but for the conductivity profile with two maxima. 

Details of the dual regularization algorithm are de-
scribed in [4,7]. In this paper we present results of this 
problem solution based on a simplified approach – the 
minimization of the discrepancy functional 

 in (8) under the stipulation 

that , when  .   

2
1 0| ( , ) ( ) ||| I xσ ξ ω−

0x → z → −∞
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