УДК 621.371:526.2+551.526

ОПРЕДЕЛЕНИЕ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ОДНОРОДНОГО ПОЛУПРОСТРАНСТВА ПО ТЕПЛОВОМУ РАДИОИЗЛУЧЕНИЮ НА ОСНОВЕ ТЕРМОЭВОЛЮЦИОННОГО УРАВНЕНИЯ

К.П. Гайкович

Получено аналитическое решение задачи определения температурного профиля полупространства по эволюции яркостной температуры его теплового радиоизлучения на основе совместного решения уравнения переноса излучения и теплопроводности.

1. Введение. Дистанционное определение температурного распределения среды по тепловому радиоизлучению применяется для решения задач геофизики, радиоастрономии, медико-биологической диагностики, а также для зондирования атмосферы. Все расширяется круг задач подповерхностного зондирования. Наиболее существенным отличием от атмосферных задач, которое вызывает и наибольшие трудности, является наличие при подповерхностном зондировании отражения и рассеяния от границ раздела. При этом вариации яркостных температур среды, связанные со спектральной и температурной зави шостыо коэффициента отражения, часто превосходят эффект, связанный с глубинной неоднородностью температуры.

Возможно, именно поэтому задачи подповерхностного зондирования начали впервые решаться в радиоастрономии, где, например, вариации яркостной температуры Луны составляют $150-200\,\mathrm{K}$ и существенно превосходят вариации, связанные с неопределенностью коэффициента отражения ($\leq 10\,\mathrm{K}$) [1]. Дальнейшее развитие эти задачи получили в медицинских приложениях при радиометрическом зондировании внутренней температуры тела, где был применен контактный метод, использующий компенсирующее подшумливание [2, 3] и решена проблема формирования теплового излучения многослойной среды [4]. Проявлялся большой интерес и к возможностям подповерхностного зондирования в геофизических задачах [5]. Заметное практическое продвижение в этом

направлении было достигнуто в работах [6, 8], где конкурирующие факторы отражения и рассеяния были устранены с помощью специальной методики измерений, основу которой составляет прием излучения антенной системой, расположенной под плоским металлическим экраном. С помощью этой методики решались задачи зондирования термически стратифицированного поверхностного слоя водной среды [6], температурного профиля грунта в летних и зимних условиях [7, 8].

Перечисленные проблемы сводятся к решению задачи определения температурного профиля T(z) полупространства $z \le 0$ по яркостным температурам $T_{\rm S}$ теплового радиоизлучения

$$T_{g}(\lambda) = (1 - R) \int_{-\infty}^{0} T(z) \gamma(\lambda) \exp[\gamma(\lambda) z] dz, \qquad (1)$$

 γ - коэффициент поглощения среды, λ - длина волны, коэффициент отражения (в дальнейшем полагаем R = 0). Трудность решения (1) связана с тем, что это уравнение Фредгольма 1-го рода некорректным и является его решение невозможно использования дополнительной информации \circ T(z)[9]. конкретной физической ситуации эта информация может иметь тот или иной специфический вид, который и определяет метод регуляризации (1). При термическом зондировании атмосферы обычно используется статистическая информация о среднем профиле температуры и его ковариационных межуровневых связях (так называемый метод "статистической регуляризации") [10], а также регрессионные методы [11]. Иногда бывает известен вид функции T(z), как например, при зондировании структуры внутренних волн в атмосфере [12] или при измерениях промерзшего грунта [8]. Тогда задача сводится к решению возникающей системы уравнений относительно параметров, определяющих эту функцию. В других случаях известно, что T(z)принадлежит к компактному классу функций (монотонных, выпуклых, с ограниченной вариацией). Тогда решение получается путем невязки градиентными методами [13]. Весьма иицьеиминим эффективны методы Тихонова [9], использующие квадратичную суммируемость или существование производных T(z), основанные на минимизации регуляризирующего функционала (метод обойденной невязки [9]). Этот подход с успехом применялся в [6 - 8].

Новые возможности дистанционного зондирования открываются, если использовать тот факт, что подповерхностное температурное распределение не произвольно, а удовлетворяет уравнению теплопроводности для определенных граничных условий. Это позволяет

ввести в рассмотрение и использовать временную зависимость яркостной температуры. Оказывается возможным получить аналитическое решение уравнения (1).

2. Термоэволюционные уравнения для яркостной температуры. Идея использования уравнения теплопроводности для решения (1) возникла еще в первых работах по подповерхностному зондированию Луны, где в (1) подставлялось известное решение уравнения теплопроводности для периодического граничного условия [1]. В [7,14] было получено совместное решение уравнений переноса излучения и теплопроводности для произвольных граничных условий в виде интегральных соотношений между наблюдаемыми яркостными температурами и предшествовавшей эволюцией температуры (или теплового потока) поверхности. Эти соотношения получили название термоэволюционных уравнений.

В случае, когда граничное условие для температуры T(z,t) полупространства $z \le 0$ (t - время) с коэффициентом температуропроводности a^2 имеет вид

$$T(0,t) = T_0(t),$$
 (2)

для яркостной температуры справедливо первое термоэволюционное уравнение

$$T_{\mathfrak{A}}(t) = \int_{-\infty}^{t} T_{0}(\tau) \left[\frac{\gamma a}{\sqrt{\pi}(t-\tau)} - (\gamma a)^{2} \operatorname{erfc}(\gamma a \sqrt{t-\tau}) \exp[(\gamma a)^{2}(t-\tau)] \right] d\tau.$$
 (3)

Если задать граничное условие для потока тепла J_0 через поверхность z=0 в виде

$$\frac{dT}{dz}(0,t) = -\frac{1}{k}J_0(t), \qquad (4)$$

получается второе термоэволюционное уравнение

$$T_{\pi}(t) = -\int_{-\pi}^{t} J_{0}(\tau) \frac{a^{2}\gamma}{k} \operatorname{erfc}(\gamma a \sqrt{t-\tau}) \exp[(\gamma a)^{2}(t-\tau)] d\tau,$$
 (5)

k - коэффициент теплопроводности.

Уравнения (3) и (5) использованы в [7, 14] для решения ряда задач дистанционного зондирования температурной динамики и теплообмена поверхности с атмосферой. В частности, уравнения (3) и (5) решались численно как линейные интегральные уравнения Вольтерра

1-го рода (с переменным верхним пределом) относительно $T0(\tau)$ или $J_0(\tau)$ – Далее, из известных решений уравнения теплопроводности определялась динамика подповерхностного профиля T(z,t). При этом важно отметить, что восстановление осуществлялось по наблюдениям $T_{\rm M}$ только на одной длине волны.

Однако решение интегральных уравнений (3) и (5) численными методами является довольно сложной задачей, в которой при вычислениях на ПЭВМ среднего класса неизбежны ограничения на размерность величин. Это обстоятельство, а также желание получить более глубокие результаты стимулировало поиск аналитического решения (3) и (5), которое позволило бы непосредственно вычислять профиль T(z,t) по заданной динамике $T_{\rm R}(t)$. Вывод этого результата и составляет основное содержание работы.

3. Решение термоэволюционных уравнений. Будем исходить из уравнения (5). Перепишем его в сокращенном виде

$$T_{\mathfrak{A}}(t) = -\int_{-\infty}^{t} J_{\mathfrak{O}}(\tau) K(t, \tau) d\tau$$
 (6)

и продифференцируем по t:

$$\frac{dT_{\mathfrak{A}}}{dt} = -\frac{a^{2}\gamma}{k} J_{0}(t) - \frac{a^{2}\gamma}{k} \int_{-\infty}^{t} J_{0}(t) (\gamma a)^{2} \times \left[\frac{k}{a^{2}\gamma} K(t,\tau) - \frac{1}{\sqrt{\pi}\gamma a\sqrt{t-\tau}} \right] d\tau.$$
 (7)

Замечая, что в (7) второе слагаемое с точностью до множителя совпадает с (6), имеем

$$\frac{dT_g}{dt} = (\gamma \alpha)^2 T_g - \frac{\alpha^2 \gamma}{k} J_0(t) + \frac{\alpha^2 \gamma}{k} \frac{(\gamma \alpha)}{\sqrt{\pi}} \int_{-\infty}^{t} J_0(\tau) \frac{d\tau}{\sqrt{t-\tau}}.$$
 (8)

Обозначив
$$\chi=\gamma a/\sqrt{\pi}\,,\,f(t)=-rac{k}{a^2\gamma}iggl[rac{dT_{\mathcal{H}}}{dt}-(\gamma a)^2T_{\mathcal{H}}iggr]$$
 , можно

переписать (8) как

$$J_0(t) = \chi \int_{-\infty}^{t} J_0(\tau) \frac{d\tau}{\sqrt{t-\tau}} + f(t)$$
 (9)

- уравнение Вольтерра 2-го рода с ядром абелевского типа. Для его решения используем метод итерированных ядер [15]. Выполним конволюцию (свертку) левой и правой частей уравнения (9) с ядром интеграла в (9). Имеем

$$\chi \int_{-\infty}^{t} J_0(\tau) \frac{d\tau}{\sqrt{t-\tau}} = \chi^2 \pi \int_{-\infty}^{t} J_0(\tau) d\tau + \chi^2 \int_{-\infty}^{t} f(t) \frac{d\tau}{\sqrt{t-\tau}}.$$
 (10)

В силу уравнения (9)

$$\chi \int_{-\infty}^{t} J_{o}(\tau) \frac{d\tau}{\sqrt{t-\tau}} = J_{o}(t) - f(t), \qquad (11)$$

так что (10) принимает вид

$$J_0(t) = (\gamma a)^2 \int_{-\infty}^t J_0(\tau) d\tau + f(t) + \frac{\gamma a}{\sqrt{\pi}} \int_{-\infty}^t f(\tau) \frac{d\tau}{\sqrt{t-\tau}}.$$
 (12)

Дифференцируя (12) по времени, имеем

$$\frac{dJ_0}{dt} = (\gamma a)^2 J_0 + f'(t) + \frac{\gamma a}{\sqrt{\pi}} \int_{-\infty}^{t} f'(\tau) \frac{d\tau}{\sqrt{t-\tau}}.$$
 (13)

Уравнение (13) легко интегрируется:

$$J_0(t) = \int_{-\infty}^{t} f'(\tau) \exp[(\gamma a)^2 (t-\tau)] \operatorname{erfc}(-\gamma a \sqrt{t-\tau}) d\tau.$$
 (14)

Далее, подставим в (14) выражение

$$J_{0}(t) = \frac{k}{a^{2} \gamma} \int_{-\infty}^{t} (\gamma a)^{2} T_{\Re}'(\tau) \exp[(\gamma a)^{2} (t-\tau)] \operatorname{erfc}(-\gamma a \sqrt{t-\tau}) d\tau - \frac{k}{a^{2} \gamma} \int_{-\infty}^{t} T_{\Re}''(\tau) \exp[(\gamma a)^{2} (t-\tau)] \operatorname{erfc}(-\gamma a \sqrt{t-\tau}) d\tau$$
(15)

и проинтегрируем второе слагаемое в (15) по частям

$$J_{0}(t) = \frac{k}{a^{2}\gamma} \left[\int_{-\infty}^{t} (\gamma a)^{2} T_{N}'(\tau) \exp[\{\gamma a\}^{2}(t-\tau)\} \operatorname{erfc}(-\gamma a\sqrt{t-\tau}) d\tau - (16) \right]$$

$$- T_{N}'(\tau) \exp[\{(\gamma a)^{2}(t-\tau)\} \operatorname{erfc}(-\gamma a\sqrt{t-\tau})] + \left[\int_{-\infty}^{t} (\gamma a)^{2} T_{N}'(\tau) \left(\frac{1}{\sqrt{\pi} \gamma a\sqrt{t-\tau}} + \exp[\{(\gamma a)^{2}(t-\tau)\} \operatorname{erfc}(-\gamma a\sqrt{t-\tau}) d\tau \right) \right]$$

В результате получается формула обращения для уравнения (5):

$$J_{0}(t) = -\frac{k}{a^{2}\gamma} \left[T_{g}'(t) + \gamma a \int_{-\infty}^{t} T_{g}'(\tau) \frac{d\tau}{\sqrt{\pi(t-\tau)}} \right]. \tag{17}$$

Решение уравнения (3) получается из известного выражения, связывающего $J_0(t)$ и $T_0(t)$ [16]:

$$T_0(t) = -\frac{\alpha}{k} \int_{-\infty}^{t} J_0(t) \frac{d\tau}{\sqrt{\pi(t-\tau)}}.$$
 (18)

Подставив (17) в (18), имеем

$$T_{0}(t) = T_{z}(t) + \frac{1}{7a} \int_{-\infty}^{t} T_{A}'(\tau) \frac{d\tau}{\sqrt{\pi(t-\tau)}}$$
 (19)

Выражения (17) и (19) позволяют определить эволюцию температурного профиля T(z,t) на основе решений уравнения теплопроводности. Так, подставляя (19) в известное соотношение [16],

$$T(z,t) = -\int_{-\infty}^{t} T_0(\tau) \frac{z}{\sqrt{4\pi a^2 (t-\tau)^3}} \exp\left(-\frac{z^2}{4a^2 (t-\tau)}\right) d\tau,$$
 (20)

имеем

$$T(z,t) = -\int_{-\infty}^{t} T_{g}(\tau) \frac{z}{\sqrt{4\pi\alpha^{2}(t-\tau)^{3}}} \exp\left(-\frac{z^{2}}{4\alpha^{2}(t-\tau)}\right) d\tau - (21)$$

$$-\int_{-\infty}^{t} \left(\frac{1}{7\alpha} \int_{-\infty}^{\tau} T_{g}'(s) \frac{ds}{\sqrt{\pi(\tau-s)}}\right) \frac{z}{\sqrt{4\pi\alpha^{2}(t-\tau)^{3}}} \exp\left(-\frac{z^{2}}{4\alpha^{2}(t-\tau)}\right) d\tau.$$

Изменяя порядок интегрирования во втором слагаемом (21) и выполняя необходимые преобразования, имеем

$$T(z,t) = -\int_{-\infty}^{t} T_{g}(\tau) \frac{z}{\sqrt{4\pi a^{2}(t-\tau)^{3}}} \exp\left(-\frac{z^{2}}{4a^{2}(t-\tau)}\right) d\tau + (22)$$

$$+ \frac{1}{7a} \int_{-\infty}^{t} T'_{g}(\tau) \exp\left(-\frac{z^{2}}{4a^{2}(t-\tau)}\right) \frac{d\tau}{\sqrt{\pi(t-\tau)}}.$$

И, наконец, интегрируя второе слагаемое (22) по частям, получаем искомое соотношение:

$$T(z,t) = \int_{-\infty}^{t} T_{\pi}(\tau) \exp\left(-\frac{z^{2}}{4a^{2}(t-\tau)}\right) \left[-z - \frac{1}{\gamma}\left(1 - \frac{z^{2}}{2a^{2}(t-\tau)}\right)\right] \times (23)$$

$$\times \frac{d\tau}{\sqrt{4\pi a^{2}(t-\tau)^{3}}}.$$

Таким образом, профиль температуры представляется в виде интеграла от эволюции яркостной температуры, т. е. задача одноволнового температурного зондирования имеет точное решение и является корректной (на что указывали результаты численного решения уравнений (3) и (5) [14]). Следует отметить, что максимальная глубина зондирования при использовании (23) не ограничена толщиной скин-слоя, как при решении (1) без учета уравнения теплопроводности.

Рассмотрим асимптотическое поведение полученных уравнений при неограниченном росте коэффициента поглощения среды ($\gamma \to \infty$), когда из (1) следует $T_{\rm F} \approx T_0$ (полагая R=0). Уравнение (23) при этом переходит в соотношение (20), уравнение (19) дает естественный результат $T_0(t)=T_{\rm F}(t)$, а уравнение (17) переходит в выражение

$$J_0(t) = -\frac{k}{a} \int_{-\infty}^{t} \frac{dT_0}{d\tau}(\tau) \frac{d\tau}{\sqrt{\pi(t-\tau)}},$$
 (24)

которое представляет собой известное соотношение между эволюцией потока тепла и поверхностной температурой (см., например, в [16]).

Таким образом, можно отметить, что полученные уравнения весьма

компактны и имеют ясный физический смысл.

Полученные результаты открывают новые возможности радиометрического зондирования. Одноволновый контроль температурного распределения среды, температуры поверхности и потока тепла через границу полупространства реализуется на основе соотношений (17), (19) и (24). Более широкие возможности использования этих уравнений по сравнение с методом численного интегрирования уравнений (3) и (5), реализованным в [14], вполне очевидны.

ЛИТЕРАТУРА

- 1. Тихонова Т. В., Троицкий В. С.//Изв. вузов. Радиофизика. 1970. Т. 13. N 9. С. 1273.
- 2. Троицкий В. С. , Аранжереев В. А., Густов А. В. и др. //Изв. вузов. Радиофизика. 1976. т. 29. N 1. с. 62.
- 3. Гайкович К. П., Троицкий Р. В. //Изв. вузов. Радиофизика. 1983. Т. 31. N 9. С. 1104.
- 4. Bardati F., Solimini D.//Radio Sci. 1983. V. 18. N 6. P. 1393.
- 5. Кондратьев К. Я. . Шульгина В. М.//ДАН СССР. 1971. т. 200. N 1. C. 88.
- 6. Гайкович К. П., Резник А. Н., Сумин М. И., Троицкий Р. В.// Изв. АН СССР. Сер. ФАО. 1987. т. 23. N 7. С. 761.
- 7. Гайкович К. П., Резник А. Н.//Изв. вузов. Радиофизика. 1989. Т. 32. N 11. C. 1343.
- 8. Гайкович К. П., Резник А. Н., Троицкий Р. В.//Изв. вузов. Радиофизика. 1989. Т. 32. N 12. C. 1467.
- 9. Тихонов А. Н., Гончарский А. В., Степанов В. В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. М.: Наука, 1983.
- 10. Турчин В. 4>., Козлов В. П., Малкевич М. С. //УФЕ. 1970. т. 102. N 3. C. 345.
- 1 1 . Westwater E.R., Srocezy W.B.//J.Climate Applied Meteorology. 1984. V. 23. N 5. P. 689.
- 12. Гайкович К. П., Троицкий А. В. //Изв. вузов. Радиофизика. 1991. Т. 34. N 2. С. 103.
- 13. Василенко Н. А., Гайкович К. П., Сумин М. И. //ДАН СССР. 1986. Т. 290. N 6. C. 1332.
- 14. Гайкович К. П.//Исследование Земли из космоса. 1990. $\rm N$ 6. C.71.
- 15. Краснов М.Л. Интегральные уравнения. М.: Наука, 1975.
- 16. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика, т.е. Гидродинамика. М. : Наука, 1988.

Научно-исследовательский радиофизический институт

Поступила в редакцию 3 июля 1991 г.

DETERMINATION OF THE TEMPERATURE DISTRIBUTION IN HOMOGENEOUS HALF-SPACE BY THERMAL RADIOEMTSSION ON THE BASE OF THERMOEVOLUTION EQUATION

K. P. Gaikovich

On the base of mutual solution of thermal conductivity and radiation transfer equations the solution of the problem of half-space temperature profile determination by evolution of its brightness temperature is obtained.