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The observed frequencies of internal gravity waves (IGWs) and their contribution to the variability of the 
brightness temperatures were determined on the basis of spectral analysis of the temporal dynamics of the 
thermal radio emission of the atmosphere at the frequencies 53.5, 54.0, 54.5, and 55.0 GHz. Methods for 
reconstructing from multifrequency measurements in the O-, lines the altitude distribution of the perturbation 
of the temperature of IGWs from the spectral amplitudes of their contribution to the brightness temperature 
were developed. 

1. Internal Gravity Waves in the Boundary Layer of the Atmosphere. The sources of IGWs are atmospheric fronts, 
mesoscale processes, obstacles in the path of wind (mountains), storms, as well as tectonic processes. Internal gravity waves 
can propagate virtually undamped in a stably stratified layer of air over large distances from sources (hundreds and thousands 
of kilometers) and in the process transport significant energy. 

In a stably stratified layer, i.e., when the temperature gradient γ = dT/dz satisfies the condition γ> γa, where γa = —9.8 
Km is (he adiabatic gradient, the equation for the vertical velocity of the particles of IGWs have the following form in the 
Boussinesq approximation 

 

where 

 
 

Here N is the Brunt—Vaisala frequency, which usually ranges from several to tens of minutes, g is the acceleration of gravity, 
p is the density of air, and Т is the temperature. Internal gravity waves with frequencies ω ≤ N and vertical scale comparable 
to the thickness of the stable layer propagate. Under conditions of waveguide propagation above the earth's surface, the 
solution of Eq. (1) for the amplitude of the fundamental mode 

 

where ∆z is the thickness of the stable layer of the atmosphere, corresponds to zero boundary conditions for the stable layer. 
The process of wave oscillations in the IGWs is nearly adiabatic, i.e., displacement of some volume of air by the amount ∆z 
changes its temperature by the amount ∆Т = γa∆z, while the temperature at the level z, to which this volume was displaced, 
changes by the amount ∆T = (γa — γ)∆z. For ∆z = 100 m the quantity ∆T can be equal to several degrees; this makes it 
possible to observe temperature oscillations in IGWs from the corresponding measurements of the thermal radio emission of 
the atmosphere in the absorption lines of O2 with resonances at the wavelengths λ = 5 mm and λ = 2.6 mm. By observing 
IGWs with frequency ω it is easy to obtain from Eq. (3), assigning that the vertical scale of the oscillations is less than ∆z, an 
expression for the vertical profile of the amplitude of the periodic disturbance of the temperature: 
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The periods of HGWs are usually equal to several minutes and the wavelengths are equal to several kilometers. In the real 
atmosphere the distribution ∆T(z) can be more complicated than Eq. (4), because of the possible alt ii ude dependence of the 
temperature gradient, as well as in cases when the disturbance is strong, which results in breaking of waves and appearance of 
cellular circulation, which makes the problem multidimensional. 

2. Variations of the Thermal Radio Emission of the Atmosphere Accompanying Propagation of IGWs. The 
expression for the brightness temperature of thermal radio emission of the atmosphere in ground-based measurements at 
wavelength λ and in the direction with zenith angle θ has the form 

 
 

where κ( z, λ) is the absorption coefficient. 
It is well known that the altitude profile T(z) can be reconstructed from elevation-angle or spectral measurements in the 

O2 lines on the basis of the solution of a Fredholm integral equation of the first kind (5) [2, 3]. Physically, the solution is based 
on the fact that the thickness of the layer in which the radiation is formed depends on the wavelength and elevation angle of 
observation while the intensity of the radiation is proportional to the air temperature. It should be noted that although Eq. (5) is 
improperly-posed and it requires the use of additional a priori information about the properties of the exact solution, it has 
been demonstrated that it is possible to reconstruct the characteristic features of the distribution T(z) in the boundary layer of 
air, including inversion situations [3], when propagation of IGWs is especially likely. In principle, the variations of T(z) in 
IGWs can be reconstructed directly from measurements of Tb at a series of wavelengths or the dependence Tb(θ). However, the 
amplitude of the oscillations of Tb usually does not exceed several tens of degrees Kelvin, which is comparable to the level of 
the fluctuation sensitivity of a radiometer (∼0.3 К with integration constant τ = 4 sec). Sometimes, though rarely, cases of 
strong oscillations of Tb are encountered; such oscillations were recorded in the first observations of IGWs |4]. 

Figure 1 shows examples of observations of IGWs at the frequency 53.5 GHz (1 — case of isothermal stratification (γ ≈ 
0 K/km); 2 — inversion stratification (γ = 50 K/km)]. In order to detect most IGWs, however, the sensitivity must be high; 
detection is also hindered by turbulent fluctuations of the thermal radio emission, which can also be of the same order of 
magnitude as the effect owing to the presence of the wave process itself. It is difficult to increase the sensitivity by increasing 
the integration time, 
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since the period of the IGW is not known beforehand. An effective method in this case could be spectral analysis of the 
observed dynamics of Tb(t), which, when a periodic component is present in Tb, makes it possible to separate this component 
reliably against the background of the wide spectrum of turbulent fluctuations of the radiation and the radiometer noise. An 
independent analysis of the dynamics of Tb at different wavelengths makes it possible to increase the significance of the 
detection of IGWs, and it also makes it possible to reconstruct the altitude distribution of the amplitude of the oscillations of 
T(z) on the basis of the solution of the corresponding inverse problem. At the same time, the stratification of the temperature, 
according to which it is possible to estimate the conditions of propagation of the observed IGWs, can be reconstructed from 
the solution of the problem for the constant component of Tb. The elevation-angle method of reconstructing IGWs is limited, 
because of the need to perform measurements in the direction along the azimuth, perpendicular to the direction of propagation 
of an IGW. The idea of detecting IGWs on the basis of spectral analysis of measurements was used in |5|. But there the 
dependence Tb(t) was regarded as a random process, and the autocorrelation function and the power spectrum of Tb were 
detected (the latter by Fourier transforming the former). The power spectrum of Tb makes it possible to judge the presence of a 
wave process, but this physical characteristic is not simply related with the altitude distribution of the temperature 
perturbation, and this made it impossible, in spite of the existence of multifrequency measurements, for the authors to make 
further progress in the problem of detecting IGWs and to reconstruct the altitude structure of the temperature oscillations. 

By studying the Fourier expansion of the time dependence Tb (t) itself it is possible to obtain an equation relating the 
corresponding components of this expansion with the components of the Fourier expansion of T(z,t). We have 

 
 

where ωj = iω  and Tb°(λ) is the constant component of Tb. Analogously, we represent T(z,t) in the form 

 

The components Tb(ωj, λ) are determined from 

 

The time interval tm = π/ω in which the function is expanded is chosen to be long enough so that ω « N and the terms in the 
series (6) will contain harmonics which are known to be close to the frequency N. Then, obviously, 
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TABLE 1 
 

v, GHz 53.5 54 54.5 55
θ = 0 0.08  0.12  0.16 0.2

TB(ω1)  θ = 760 0.26  0.28  0.3 0.26
TB(ω2) θ = 0 0.16  0.18  0.15  0.06  

which is the analog of Eq. (5) for the spectral components of Tb and T(z). For the constant components we have 

 

It is possible to formulate on the basis of Eqs. (9) and (10) the problem of determining the spectral amplitude of IGWs T(ωj,z) 
and the stratification T°(z). whence the distribution T(z,t) itself can be easily reconstructed from Eq. (7). In me process, the 
Fourier analysis was performed over a period of 64 min with a time step of 30 sec. 

Figure 2a shows the results of the spectral analysis of the dynamics of brightness temperatures at the frequencies 53.5, 
54.5, and 55 GHz (curves 1-3; τ = 2π/ω), while Fig. 2b shows the corresponding distribution T°(z), obtained by solving Eq.(10) 
by the method of statistical regularization (maximum entropy) analogously to [3] using a priori information about the 
multilevel covariation matrix of the temperature BTT. One can see that in the case presented in Fig. 2b there exist layers for 
which the necessary condition for propagation of IGWs γ > γa is satisfied. Indeed, there exists a layer, extending from the 
earth's surface up to ~1 km, where the distribution T°(z) is close to the isothermal distribution (γ = 0). At higher altitudes z > 1 
km the gradient γ = —6 K/km. Since γ > γa, we can sec that a wave process, but with a different characteristic frequency, is 
also possible in this layer. Estimates-of the Brunt-Vaisala frequencies N from Eq. (2) give N1 = 0.019 sec-1 for the layer near 
the ground and N2 = 0.0126 sec-1 in the second layer, respectively; these values are in good agreement with the frequencies of 
the maxima of the spectral amplitudes of Tb in Fig. 2a (ω1 = 0.018 sec-1 and ω1 = 0.014 sec-1) and shows that the observed 
spectral characteristics are indeed related with IGWs. Spectral analysis of the brightness temperatures did not reveal any 
features during absolute calibration with respect to reference standards; this eliminates the possibility of interpreting the 
observed effect as a manifestation of periodic variations of the gain of the radiometer. The level of the spectral amplitudes of 
the noise in the process of calibration as well as at frequencies outside the observed maxima gives an estimate of the error δTb 
of the right-hand side of Eq. (9), which was employed to reconstruct the corresponding harmonics of the perturbation of the 
temperature profile. From Fig. 2a it is evident that δTb = 0.01-0.03 K. The spectral amplitudes Tb(ω, λ) for the data in Fig. 2 are 
presented in Table 1. 

3. Reconstruction of the Amplitude Profile of the Temperature Perturbation in IGWs from Multifrequency 
Radiometric Measurements. The problem of reconstructing the spectral amplitude T(ωj,z) from Eq. (9) is equivalent in form 
to the problem of reconstructing the constant component T°(z) from Eq. (10). For compactness, we rewrite both equations in 
operator form: 

 

where Tb
δ is the measured realization of the right-hand side, whose error δTb satisfies the inequality 

 

and Tb(λ) corresponds to the exact solution T(z). In order to solve Eq. (11) it is necessary to use not the exact kernel К but 
rather an approximate kernel Kh, whose measure of error h is estimated as 

 

This is because the problem is formulated in a discrete form when it is solved numerically and because the kernel К is nonlinear 
owing to the weak temperature dependence of the absorption coefficient of the radio waves. It should also be noted that the 
smoothing 
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effect of the kernel limits the class of possible realizations of Tb(λ), and when the function Tb
δ contains a random error it can 

fall outside the admissible class, and this makes Eq. (11) incompatible. The measure of incompatibility then satisfies 

 

 
Obviously, 

 

Equation (11) is a Fredholm integral equation of the first kind. It is well known that the solution of such equations is an 
improperly posed problem, i.e., when solving Eq. (11) without the use of adequate additional a priori information about the 
form of the distribution T(z) small errors δTb correspond to arbitrarily large errors in T(z). This means that the operator inverse 
to the completely continuous operator К is unbounded. The choice of the specific algorithm for solving Eq. (11) depends on 
the form of the a priori information employed. Unfortunately, the equation for the periodic component cannot be solved using 
statistical information about its average value and the covariation function, as is successfully done for the constant component, 
for which there exist extensive aerological data for most climatic conditions. For this reason, in order to solve the problem 
Tikhonov's method was employed in the form of the principle of generalized discrepancy, which employs information about 
the smoothness of the exact solution |6]. The possibilities of using this method for radiometric sounding of temperature 
profiles in the boundary layer were studied in |7]. 

According to (6], in order to find the approximate solution of Eq. (11) it is necessary to minimize on the set of 
differentiable functions the functional 

 

where ||x|| designates the norm of the function x as an element of the space L2 or W2
1 (definitions are given in [6]). It was 

shown in [6] that if the regularization parameter is matched with the error of measurements in a definite manner, in particular 
if it is defined as the root of the one-dimensional nonlinear equation for the generalized discrepancy 
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 , then as δTb→0 the approximate solution Tα approaches uniformly the exact 

solution T(z). This is a big advantage of the method under study over most other methods, whose solutions cannot, as a rule, be 
shown to converge. The convex functional (16) is minimized by gradient methods, which have been well studied from the 
computational tandpoint of the problem of quadratic programming. The measure of discrepancy µ is determined in the process 
of minimizing (17) and for the problem at hand usually µ<< δTb. The measure of error of the kernel h is also found by means of 
a numerical 
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experiment. In this case h is determined by the nonlinearity associated with the temperature of the kernel K, and for different 
functions T(z) the corresponding error h||T|| in Eq. (17) ranges from 10-6 to 3⋅10-2 К. 

The method also permits flexible use of additional information about the exact solution T(z) in the form of constraints, if 
it is known that the exact solution is greater (or less) than some function or if the function is finite and its carrier is known. A 
more accurate solution can be obtained if the solution can be sought as a deviation from an "average" model or "probable" 
distribution. 

When solving an improperly posed problem it is possible to establish universally valid relations between the error of 
measurement and the error of reconstruction. It is necessary to perform a numerical experiment using a closed scheme; this 
makes it possible to judge the quality of the reconstruction for the class of exact solutions studied and for the type of errors 
studied, and it also makes it possible to choose the optimal measurement parameters (set of wavelengths and their number). 

In the case at hand the altitude range in which perturbations T(z) arc possible can be judged from the profile of the 
constant component T°(z). The condition that T(z) is nonnegative can be used as additional information. Numerical 
experiments (see Fig. За) have shown that for distributions of the type (4) with an amplitude of 0.5 К and measurement 
accuracy δTb = 0.01-0.03 К the reconstructed profiles arc close to the starting profiles; the error of determination of the 
amplitude is equal to -0.2 K. Analogous disturbances at altitudes above 1 km (Fig. 3b) are not reconstructed as well and 
require higher accuracy (~ 0.015 K); such accuracy already falls at the level of error h||T||, introduced by the temperature 
dependence of the kernel (in Fig. 3 the curves 1 represent the starting profiles and the curves 2 represent the reconstructed 
profiles). The number of wavelengths employed is fully adequate for the existing level of error, but when sounding the layer 0-
1 km it is best to choose their values closer to the resonance of the oxygen spectrum or to perform oblique measurements at 
angles θ ≈ 70-80°. The results once again agree with the results obtained in the case studied in [7|, which is physically close to 
our case. 

The problem analyzed here can be solved by an alternative approach, since the exact theoretical form of the altitude 
distribution of the amplitude of the IGWs (4) is known though, of course, it should be kept in mind that the assumptions 
incorporated in the derivation of (4) arc satisfied only approximately in the real atmosphere. Nonetheless, substituting Eq. (4) 
into Eq. (9), it is possible to obtain a system of equations at different wavelengths for the parameters of the sinusoidal 
perturbation. We rewrite Eq. (4) in the form 

 

taking into account the possibility of the existence of IGWs in the layer h0 < z < h0 + ∆h. Then ihe corresponding system of 
equations assumes the form 

 

In order to determine the three unknown parameters (18) it is formally sufficient to have observations at three wavelengths. 
Since errors are present, it is also helpful to use a large number of wavelengths and, for example, the method of least squares. 
Since The integral in Eq. (19) cannot be determined analytically, the corresponding problem was solved numerically by 
running through values of the parameters A, h0, and ∆h in the intervals 0.1-2 K, 0-2 km, and 0.5-4 km, respectively, with steps 
of 0.1 K, 0.1 K/km, and 0.1 km, respectively. The solutions were the functions (18) satisfying the conditions 

 

4. Results of Reconstruction. The results of reconstruction of the profiles of the amplitudes of temperature oscillations 
in IGWs by the two methods studied above are presented in Fig. 4 (a — reconstruction by Tikhonov's method; b — family of 
solutions (hatched regions), satisfying Eq. (20) for the model (18)]. It is evident from these results that the wave processes at 
two different frequencies ω1 and ω2 are indeed localized in different altitude layers and their characteristic scales agree with 
the structure of the constant component of the temperature profile T°(z) (see Fig. 2b). In the layer 0-1 km there exists a 
process with a characteristic period λ1 = 350 sec. The altitude distributions of the amplitudes of the oscillations in this layer, 
reconstructed by the two different methods, closely coincide with one another (see Fig. 4a, b, curves 1). 

A wave process also exists in the layer above 1 km, but its characteristic period is different: λ2 = 450 sec, which 
corresponds to a different temperature gradient. As already mentioned above, the accuracy of the reconstruction for the same 
level of errors of measurement decreases with altitude, so that the reconstruction by the two methods reveals a large spread of 
values. However, both methods agree in that the process is located primarily at altitudes above 1 km (see Fig. 4a, b, curves 2). 
It should be noted 
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that the purely sinusoidal process of the type (18) can he made to agree with measurements based on (20), setting δTb not less 
than 0.06 K, while Tikhonov's method gives a solution with a more realistic estimate δTb = 0.03 K. There are grounds for 
supposing that in the layer 1-6 km the process is not sinusoidal, since the air density decreases significantly with increasing 
altitude, and this is not taken into account in the derivation of Eq. (3). 

The amplitudes of the oscillations of the vertical velocity and the displacement of air in IGWs, described by the relation 
(3), can be estimated from the amplitudes of the temperature oscillations using Eq. (4). For the layer 0-1 km, W0 = Tmaxω/(γa-
γ) = 1.1 m/sec and the displacement amplitude A = W0/ω = 60 m. In the layer 1-6 km, correspondingly, W0 = 3.2 m/sec and 
A = 250 m. 

The estimates agree with the characteristic parameters of the IGWs. 
The obtained results show that multifrequency radiometric measurements can be used to observe and determine the 

vertical structure and parameters of IGWs, even in complicated cases when the process exists simultaneously in different 
altitude intervals. 
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