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An equation is obtained for the brightness temperature of the thermal 
radiation from a half space, expressing the dependence of that quantity upon 
the depth distribution of thermal sources. It is shown that such an equation 
can be used to reconstruct both thermal source distributions and subsurface 
temperature profiles. The capabilities of the approach are demonstrated  by  
reconstruction of  parameters  of  a  frozen soil  layer  from radiothermal  
radiation emitted. 

The development of radiometry means and methods has created ever greater 
capabilities for subsurface probing of various media  (soils, water, biological media) 
by measuring their radiothermal radiation spectra. Such problems were considered in  
[1-7]. In a number of situations  an approach based on  simultaneous  solution of  the  
radiation  transport  and thermal  conductivity equations  have  proved  fruitful,  
allowing derivation of thermoevolution equations [5,7],  which establish direct  
relationships  between  evolution of  boundary conditions on the surface (temperature 
or  thermal  flux) and the dynamics of observed  brightness temperatures. By using the  
time dependence it proves possible to formulate and solve a number of problems  
related to reconstruction of underground profiles, thermal history, and determination 
of parameters of the radiating half-space [5,7]. 

In the present study we will consider another, yet similar case, where the 
temperature distribution in the half space is steady state and corresponds to thermal 
sources distributed over depth. Such problems arise in probing biological tissues,  
upon presence in the medium of thermal sources of a different nature, for example,  
regions in which phase transitions occur. 

1. Theoretical Analysis. We will consider the model of a plane half-space     
z ≤ 0 with absorption coefficient γ and thermal conductivity k. Let the thermal 
source function W(z) depend solely on depth. In this case the one-dimensional 
thermal conductivity equation has 

 

The thermal radiation brightness temperature obtained by measurements into the 
depths satisfies the well-known relationship 

 

where R is the reflection coefficient at the boundary of the half space (for  
simplicity, below we will assume that R = 0). 

Integrating by parts twice in Eq.(2), we have 

 
 

Substituting Eq.(1) in Eq.(3), we obtain the expression 
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Considering further that the heat can move only through the upper boundary, for the 
thermal flux J through the surface z = 0 we obtain 

 

Substituting Eq.(5)in Eq.(4), we then have the desired relationship 

 

If we use another possibility for choosing the limits for the integration by parts, 
we easily obtain an analog of Eq.(6), but in place of T(0) there appears  the  
temperature of  the deep layers T(—∞), which in a number of cases proves more useful  
useful: 

 

Equations (6), (7) are  Fredholm  integral  equations of the first kind relative  
to the source  function W(z) (the  surface temperature can be measured  by  contact 
methods or in the IR  range). As is well known [7], solution of this equation is an  
incorrect  problem and  requires use of adequate a priori information on the  
function W(z). On the basis of the reconstructed W(z) distribution by integrating  
Eq.(1) we can reconstruct  the  subsurface  temperature profile T(z). The natural 
question arises of what the advantage of the analogous problem of Eq.(2) directly  
for T(z), as was done, for example, in [4]. The point is that a priori information  
on W(z),  in  particular,  on  localization  of  thermal  sources,  may  be more 
accessible and more convenient  in  form  that  similar  data  for T(z),  especially 
when  the  sources occupy a relatively  small  depth  interval. Just such a situation 
exists when frozen ground is probed and  the heat  sources  are  localized  in  the 
phase transition  zone.  The depth of the transition zone varies very slowly, so that  
the problem is quasi-stationary. 

 

2.  Determination  of  Frozen  Soil  Parameters  from Radiometric Data.    In 
February and March 1987 measurements of the thermal radiation of a clay —sand soil 
were performed at wavelengths of 3, 9, and 13 cm.    In the measurements the antenna 
system was located underneath a plane metallic screen to compensate reflection (R = 
0). Contact measurements of T(z)were performed simultaneously. Over the measurement 
period the depth of the frozen layer varied from 95 to 105 cm. The results of 
retrieval of T(z) on the basis of Eq.(2) and estimates of the soil parameters were 
published by the present authors in [5,6]. 

We will consider the possibility of analyzing the data obtained on the basis of 
Eq.(6). We will neglect the thickness and motion of the phase transition zone, so  
that the thermal source function can be represented in the form 

 

Substituting Eq.(8)in Eq.(6), we have 

 

  

Substituting Eq.(8)in Eq.(7), we can obtain an analogous expression for the case 
where the value of T(—∞) is known. 

From Eq.(9) we can define the thermal source power in the phase transition 
zone                                                                        

  (10) 
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or, choosing the wavelength sufficiently small, so that (—γz*)»1, 

 

From Eq.(11)we find the temperature gradient in the frozen layer 

 

and temperature profile 

 

From Eqs.(11)and (13)we find the freezing depth 

 

Figure 1 shows results from [6] for measurement of frozen ground on two 
observation days (points, contact temperature measurements vs depth; stars, soil 
brightness temperature at wavelengths λ = 3; 9, and 13 cm, shown as function of skin- 
layer thickness d = 1/γ(λ); solid lines, T(z) profiles from Eq.(13), on the basis of 
which z was estimated according to Eq.(14)). With consideration of soil parameters  
[6, 81] for dry ground we obtain the estimate k = 2*10-3 cal/cm⋅deg⋅sec. On the basis 
of the data obtained in [6] we have γ ≈ 31/λ cm-1. From Eq.(11) we use the TB values 
(λ = 13 cm) and T(0) (see Fig.1) to define the thermal source power in the phase 
transition zone 

 



while we use Eq. (14) to determine the freezing depth

 

Considering that there was a gradual temperature decrease from the 16th to the 24th, we 
take as the mean heat liberation value for freezing of water A = 8⋅10-6 cal/cm2⋅sec.    
Then, through a 1 cm2 section over 8h there is liberated a quantity of heat Q ≈ 52 cal, 
so that a mass of liquid water m = 0.65 g freezes. Over this time period the freezing 
depth increases by approximately 10 cm, which permits the estimate of volume moisture 
content in the soil WH2O = 6.5%. 

We will note the role of snow coating in the measurements: on the one hand, the dry 
snow cover is transparent in the cm range and does not hinder measurements of soil 
radiation, while on the other, due to its low thermal conductivity it stabilizes the 
surface temperature, which insures applicability of the condition of stationary T(z) 
with good accuracy. 

Thus, in cases where the heat source is localized in some plane surface, Eqs.(6),  
(7) have an exact solution. In the case of distributed sources the solution can be  
found by methods developed in [3,4,6] for solution of the analogous inhomogeneous 
problem of  temperature profile reconstruction. 

On the basis of the equations obtained, which express the dependence of half-space 
brightness temperature on thermal source distribution over depth, an analysis has been 
performed of radio radiation measurements from frozen ground.  Estimates were obtained 
of the freezing depth and rate of latent heat liberation in the phase transition zone, 
while data on the mean rate of increase in thickness of the frozen layer was used to 
determine moisture content. 
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