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A stochastic theory of the temperature distribution and thermal radio emission of a medium (half-space) is 
developed on the basis of the results of simultaneous solution of thermal emission transfer and thermal 
conductivity equations. Expressions for the covariance functions of the temperature profile and brightness 
temperature as functions of the statistical parameters of the half-space surface temperature, which is considered 
a random, function of time, are found. Estimates of a temperature regression by thermal emission are analyzed 
using the expressions obtained. 

1. INTRODUCTION 

The authors [1-6] have developed a theory of thermal radio emission of a medium (half-space) whose temperature 
distribution depends on the dynamics of boundary conditions such as surface temperature or thermal flow through the surface 
of the medium. Using the simultaneous solution of thermal emission transfer and thermal conductivity equations, we found 
expressions for the brightness temperature of the medium in the form of a time integral of those boundary conditions [1-3]. 
Thereafter we transformed those equations [4-6] to express the boundary conditions and temperature profile of the medium 
through the evolution of its brightness temperature. Thus, we found a correct solution to the problem of one-wave radiometric 
remote sensing of the temperature profile of a medium. 

We used those results in [4-6] for radiometric study of the diurnal thermal dynamics of soil (we used measurements of 
the brightness temperature dynamics of the thermal radio emission of soil at wavelengths of 0.8 and 3 cm) and of the 
atmospheric boundary layer (we used measurements of the intrinsic thermal radio emission of the atmosphere at a wavelength 
of 0.5 cm at the center of the oxygen absorption band). 

However, long-term measurements of the dynamics of thermal emission are not always possible or convenient for 
control of the temperature profile of the medium. Also, there are methods of temperature profile reconstruction from the 
spectrum or angular dependence of brightness temperatures which are measured at an arbitrary instant of time. These methods 
involve the solution of Fredholm's ill-posed integral equation of first kind for brightness temperature. This equation cannot be 
solved without using a priori information about the properties of the desired function, including information about the 
smoothness, differentiability, and membership of T(z) in a compact class (A. N. Tikhonov's method), or statistical information 
[12-14]. Statistical methods involve the use of the covariance functions and statistical parameters of the thermal radio emission 
and temperature profile. Empirical statistical characteristics, which are determined by measurements, are used in practice. For 
example, sets of weather-balloon data received at meteorological sounding stations are used to reconstruct the temperature 
profile of the atmosphere [12-14]. A. N. Tikhonov's methods are employed to solve radio thermometry problems for the 
boundary layer of the atmosphere and soil, since it is difficult to obtain the necessary data in this case [7-11]. However, the 
results of simultaneous solution of emission transfer and thermal conductivity equations can also be used for theoretical 
determination of the necessary correlation functions if the boundary condition for temperature и considered a random function 
of time. 
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2. STATEMENT OF THE PROBLEM 

Consider first a uniform half-space z ≤ 0 with constant parameters — the thermal conductivity coefficient a2 and the 
thermal radio emission absorption coefficient γ. If a boundary condition is assigned for temperature T(0,t) = T0(t), then the 
temperature distribution of the half-space as a function of depth and time is determined from the thermal conductivity equation 

 
 

The brightness temperature of the ascending thermal emission at wavelength λ is found from the emission transfer 
equation 

 

where it is assumed for simplicity that the reflectivity of the half-space is equal to zero. 
The simultaneous solution of Eqs.  (1) and (2) enables one to express the brightness temperature through the boundary 

condition 

 
 

A similar expression was obtained for an inhomogeneous medium [6] by using the properties of a Duhamel integral 

 

where Tb
(1)(t-τ) is the response of the brightness temperature to a single jump of the surface temperature (the boundary condition 

is a Heaviside function): 

 

A solution of (3) as a Volterra equation of the first kind with a variable upper limit, which was obtained in [5, 6] has the 
form 

 
 

By substituting (5) into (1) we solve a radio thermometry problem for a homogeneous half-space [5, 6]: 
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By integrating the second term in (6) by parts, we find a formula for determination of the temperature profile by the 
evolution of the brightness temperature of the medium [5, 6]: 

 

This formula is valid for all values of z except for z = 0, when integration by parts in (6) is not possible. This property, 
which is important for further discussion, was not mentioned in the previous papers. 

Using these relations, we can obtain one more very interesting result: a formula which expresses the brightness 
temperature at one wavelength through the brightness temperature evolution at another wavelength. For this, we must 
substitute the temperature profile in the form of (6), which is expressed through the evolution of the brightness temperature Tb1 
at wavelength λ1, into formula (3) for the brightness temperature Тb2 at wavelength λ2. By reversal of the integration order and 
calculation of the internal integral with respect to z in explicit form, we find the desired formula 

 

where γ1 and γ2 are the absorption coefficients at wavelengths λ1and λ2, respectively. It is interesting to note that the use of Eq. 
(7) instead of Eq. (6) leads to an incorrect result, although formula (7) is invalid at only at one point z = 0 (because of the 
divergence at point z = 0 in the integrand). 

For γ1 = γ2, we find, from (8), the obvious result Тb1, = Тb2. In the case γ2 < < γ1, the first term in (8) vanishes, and we 
obtain a formula similar to relation (3), in which the role of the surface temperature is played by the brightness temperature 
Тb1.This result is physically apparent, since the thickness of the skin layer d2 = 1/γ2, in which thermal emission is induced at 
wavelength λ2, is much greater than the thickness d1 at wavelength λ1, and the brightness temperature Тb1, indeed plays the 
role of surface temperature for the brightness temperature Тb2. 

Relation (8) can be used for determination of the parameters of the medium by simultaneous measurement of thermal 
emission at two or more wavelengths. 

" 

3. DETERMINATION OF STATISTICAL PARAMETERS OF THERMAL RADIO EMISSION 

Let the boundary condition for the temperature be a random stationary function with a given mean (To), standard 
deviation <T0> and autocovariance function BT0T0(τ) = <(T0(t) - <T0>)(T0(t+τ) - <T0>)>. To obtain obvious physical results, the 
latter can be assigned in the form of an exponential function, 

 

where TO is the correlation time. 
The goal of further analysis is that of determining the correlation functions of the brightness temperatures of thermal 

emission through the parameters of the medium and statistical parameters of the temperature. It is obvious that <T(z)> = <T0)> 
and <Tb> = <To>  for average values, since all of the above integral relationships are normalized to unity. 

If the temperature at the half-space boundary is a random quantity, then the above relationships, which are linear 
integral expressions, make it possible to develop a statistical theory of random components of the temperature distribution and 
thermal emission of the medium on the basis of the well-known method in the theory of stationary random processes for 
Linear systems, which leads to Wiener-Lee equations. 
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The results given below determine the statistical parameters of the temperature distribution and thermal emission of the 
medium through the statistical parameters of the surface temperature of the medium. These formulas are easily obtained from 
the above expressions by changing the averaging order and integrating with substitution of variables τ′ = t — τ and are 
represented in a form which is valid for both positive and negative half-spaces. Also, we note one more property of the 
covariance functions, that Вyx(-τ)  = Вxy(τ), which will be used in what follows. 

Thus, it follows from (1) that the covariance function between the surface temperature T0 and the temperature T(z) at 
level z is given by 

 
 

where K(τ′ ) is the kernel of the integral in (1). Hence we find expressions for the variance, 

 
 

for the autocovariance matrix of the temperature at level z, 

 
 

and for the interlevel covariance matrix between the temperature T1 at level z1 and the temperature T2 at level z2 (T2  plays the 
role of surface temperature in the kernel of integral (1) in this case), 

 

The covariance function between the surface temperature and brightness temperature of the thermal radio emission of 
the medium is described by the expression 
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where K1 is the kernel of the integral in (3) or in (4). Prom (14), we find expressions for the variance 

 
 

and for the autocovariance function of the brightness temperature 

 

Formula (16) can be used to find an expression for the covariance matrix between brightness temperatures Tb1 and Тb2 at 
two different wavelengths, λ1 and λ2, 

 

from (8) and to obtain a formula for the covariance matrix between the brightness temperature and the temperature at level z, 
from (6) 
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4. REGRESSION FORMULAS. ESTIMATES FOR SOIL AND ATMOSPHERE RADIO THERMOMETRY 

The formulas which we obtained are of interest from the point of view of the widely used statistical methods for 
determination of temperature profiles by thermal radio emission or surface temperature [12-14], since earlier the parameters 
considered in the previous section of this paper were defined only empirically on the basis of a statistical analysis of 
measurements. The results presented here allow the necessary quantities to be calculated by exact formulas. Moreover, the 
physical meaning of those quantities has been clarified. 

Relation (10) is easily used for regression estimation of the temperature profile by the surface temperature: 

 

In a similar way, the temperature profile can be estimated by the brightness temperature of the medium from (14): 

 

or by using more complicated methods of multidimensional regression and statistical regularization [12-14]. Of course, the 
other covariance functions presented above can also be used in the same fashion to evaluate the corresponding quantities. It is 
well known that the error σy/x in the regression estimate of y by x is determined by the correlation factor Rxy = Bxy/σxσy 
between these quantities and their variances. In other words, this error can be calculated on the basis of the reduced 
expressions 

 

Prom the expressions for the correlation functions it is seen that the latter are not symmetrical with respect to т = 0; 
moreover, they do not reach a maximum at this point, i.e., the prediction for the future is not symmetrical to the prediction for 
the past with respect to time shift, and the prediction of the profile by current values of the earth-surface or brightness 
temperature, which is known as "optimal extrapolation" in the literature, is not optimal in fact. It is seen from (21) that an 
optimal estimate of a predicted quantity at time t is an estimate of that quantity by the corresponding predictor at time (t —τm) 
at which the function Rxy(τ) and, therefore, Bxy(τ)  reach maxima for τm. The condition from which we determine the value τm 

is, of course, dB(τ)/dτ = 0, and the corresponding equations are easily obtained from these expressions for the covariance 
functions. Specifically, in temperature-profile prediction each value of z will correspond to a certain value of τm(z), and an 
optimal extrapolation is reached in prediction by the previous value of surface temperature rather than by its current value. 
Obviously, the time shift increases with z, i.e., τm (z) is a monotonically increasing function. This property of the regression 
estimate is physically apparent: The surface perturbation of temperature acts on the temperature of the deeper layers not 
instantaneously but through a thermal conductivity mechanism with a delay which increases with depth. 

It can be assumed that in empirical covariance functions describing the temperature of the actual atmosphere, in which 
physical conditions do not correspond perfectly to the model in question, the maximum correlation will nevertheless also be 
reached at earth surface temperatures in the past, especially if we consider the boundary layer. It is also obvious that from these 
equations we can find statistical estimates not only for the future (τ> 0) and current value (τ = О) of the quantity of interest but 
also for its value in the past (τ < 0). 

Simple analytical results can be obtained for an exponential covariance function of form (9). Specifically, it follows 
from (10) that 

 

278 



 

for τ ≤ 0 and 

for τ > 0. 

 

In particular, 

It is seen that there is a characteristic correlation distance of the temperature profile with surface value 0τa=Λ  
which can serve as a definition of the atmospheric boundary layer. In the case at hand, the equation for determination of the 
time shift of optimal extrapolation τm(z) is given by 

 

It follows from (14) that 

 

Calculating the integral in (25), we find 

 

for τ ≤ 0 and

 
for τ > 0. Here 1F1 is a degenerate hypergeometric function and Г = 1/ (γa)2 is the characteristic time scale, which determines 
the heating of the medium to depth d = 1/γ of the skin layer. It follows from (26) that 

 
It is seen that the brightness temperature-surface temperature correlation is determined by the proportional time of 

surface temperature correlation and heating to the skin-layer depth at the corresponding wavelength. We have BT0Tb(0) = σT0
2 

if τ0/Γ> > 1 and BT0Tb(0) = 0 if τ0/Г << 1. This result is perfectly clear. If the medium is heated and cooled to the skin-layer 
depth during the period of surface temperature correlation, then its brightness temperature is completely correlated with its 
surface temperature; otherwise, variations of these quantities are not correlated. 

Considering the problem of the possible use of this theory for study of the atmosphere and soil, we note the following. 
In the case of soil (homogeneous soil in particular) it should be expected that the 
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random components of the temperature distribution and thermal radio emission, which are superimposed on periodic diurnal 
and seasonal variations, can be described correctly enough by this theory. The situation is different for the atmosphere, since 
the random component of the temperature profile is affected not only by thermal conductivity from the earth's surface but also 
by processes of advection, liberation of latent heat, and transfer and absorption of IR radiation. Moreover, the conditions of 
homogeneity of the medium and time independence of its parameters (turbulent thermal conductivity in particular) are not 
satisfied in the atmosphere, as a rule. However, this statistical theory is useful to describe radiation in strong lines of absorption 
in the boundary layer of the atmosphere, for example in oxygen lines at a frequency of 60 GHz, where the atmosphere is 
homogeneous with respect to the absorption factor. This was shown by the successful use of the initial formulas in [5, 6]. Also, 
it can be hoped (although this will require verification) that the vertical scale of temperature correlation Л, which is determined 
by expression (23), is also meaningful if the atmosphere is inhomogeneous or has time-dependent parameters, provided that the 
vertical transfer of heat is determined by turbulent diffusion and the mean turbulent thermal conductivity coefficient is used for 
the boundary layer. Conclusions on the conditions and applicability limits of this theory can be drawn by comparing the results 
of theoretical calculations and the empirical covariance functions. 

We now give some estimates for the above media based on the equations which we obtained. 
Usually, the correlation time of surface temperature is about three days, i.e., τ0 ≈ 2.6 ⋅ 10s sec (although, strictly 

speaking, temperature variation is a non-stationary process and its structure function also increases beyond this time period). 
Radiometric studies of the temperature dynamics of soil and of the atmospheric boundary layer are presented in [5, 6]. For soil, 
the parameters of the media are a2 = 1.0 ⋅ 10-3cm2/sec and d = 1/γ ≈ λ (λ is the wavelength), the time parameter Г = 1/ (γа)2 
varies from 10 min at λ = 0.8 cm to 50 h at λ= 13 cm, and the characteristic correlation depth in (20) Λ ≈ 16 cm. For the 
atmosphere, a2 = 7.0 ⋅103cm2/sec, d = 3.0 ⋅ 104 sin(θ) cm (θ is the angle at which atmospheric radiation is received), the 
parameter Г varies from 16 min at a measurement angle of 5° to 35 h in the zenith direction, and the correlation height Λ ≈ 
430 m. 

Under natural conditions for different types of soil, these parameters lie within the limits of a2 = 10-3-10-2cm2/sec, and d 
= 0.1-15λ, correspondingly, the time Г lies in the range from several fractions of a second for a water surface at millimeter 
wavelengths to several years for ice at decimeter wavelengths, and the correlation depth can be Λ = 15-60 cm. In the 
atmosphere, a2 = 103 - 106cm2/sec, d = 3.0 ⋅ 104sin(θ) cm (at a frequency of 60 GHz), the characteristic time of skin-layer 
heating Г can vary from 1 min at an angle of 5° to 10 days in the zenith direction, and the correlation scale between brightness 
temperature and earth-surface temperature, i.e., the depth of the boundary layer, can assume values Λ = 100 m - 3 km. 

5. CONCLUSION 

In this paper, we developed further the theory of simultaneous solution of the thermal emission transfer and thermal 
conductivity equations. The relationship between the brightness temperatures of the medium at two different wavelengths is 
found. A statistical theory of temperature distribution and thermal radio emission of the medium (half-space) is devised on the 
basis of a stochastic approach. The equations for joint and autocorrelation functions of the temperature profile and brightness 
temperatures of thermal radio emission are derived. Through a numerical procedure, this theory can be used in full measure for 
both theoretical estimates and for determination of some parameters of the medium and its thermal emission by experimental 
data. The standard variations of the temperature profile and brightness temperatures can be calculated from the statistical 
parameters of the surface temperature. Interesting results can be obtained by comparing the statistical estimates of the 
temperature profile with data reconstructed on the basis of Tikhonov's universal method [10-11] to ascertain the applicability 
range of this theory under various conditions. 

This work was supported in part by the Russian Foundation for Fundamental Research under Project 
No. 96-02-16514-a. 
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