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Results are presented from theoretical and experimental studies of a method for 
determining temperature stratification of body tissues using multifrequency mea-
surements of the body's thermal radio radiation.  The corresponding converse pro-
blem is solved for media with multilayer dielectric structure, and numerical ex-
periments are performed, on the basis of which the capabilities of the method are 
determined and requirements formulated for frequency ranges and necessary 
measurement accuracy.  Data of three-channel measurements at wavelengths of 9, 30, 
and 60 cm are used to reconstruct temperature profiles in tissues containing 
tumors.  The method is used to monitor the intensity and localization of tissue 
heating during tumor treatment by uhf hyperthermy. 

At present there is great interest in the possibility of reconstructing temperature 
profiles over depth in biological media, in particular, in the human body, from measurements 
of thermal radio radiation produced by such media. The thickness of the layer in which the 
thermal radiation is formed depends on the wavelength, varying from a fraction of a millimeter 
to several centimeters, which in principle permits use of radio radiation spectra to 
reconstruct temperature distribution down to depths of several centimeters.  Determination of 
interior body temperature significantly expands diagnostic possibilities as compared to 
measurements in the IR range, which allow temperature measurement only on the skin surface. The 
objects of study might be inflammatory or timorous processes, or other disease processes which 
produce a local temperature elevation within the; depths of tissues.  The value of such remote 
noninvasive measurements is obvious when the difficulties of direct measurements involving 
insertion of a sensor into the body are considered.  An important advantage of radiometric 
methods is' their ability to provide data continuously on a real tine basis. One possible 
concrete application, having great practical significance, would be monitoring the amount and 
localization of heating during treatment of tumors by uhf hyperthermy, i.e., heating by high 
power uhf radiation. 

Methods of long distance thermal probing, first, developed in radio astronomy, have been 
elaborated to a great extent in studies of the height profile of temperature in the 
atmosphere (1, 2).  However, direct use of this accumulated experience for reconstructing 
temperature profiles in biological media is difficult.  These difficulties involve foremost the 
specifics of the medium in question, namely its multilayer structure, which causes re-
reflections between layers and interference of the radiation, as well as intense absorption in 
tissues, which makes use of the concept of ray intensity inapplicable- in such a medium [3]. 

The results of th« present study rely on investigations reported in a number of previous 
studies.  Dielectric parameters of various tissues were calculated using the data of [4].  
Significant achievements in developing methods for solution of this type of converse problem 
wore presented in [5, 6].  Those studies developed and successfu1ly applied a method for 
reconstructing temperature profiles based on the ideas of solving incorrect converse problems 
formulated by Tikhonov's mathematical school [7, 8].  At present a solution has been obtained 
for thermal radiation from a half-space with multilayer dielectric structure for both a 
three-layer model (see, for example, [9-]), and in the general case, in particu- 
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Fig. 1.  Half-space with layered dielectric struc-
ture. The quantity εj is constant within each 
layer, while temperature is a continuous function. 

lar, in [10], where the relationship of brightness temperatures to the temperature profile 
was expressed by a Fredholm integral equation of the first kind, allowing use, of solution 
methods developed in (6). 

Significant progress has also been achieved in the area of experimental studies. A 
radiometric apparatus has been developed with special contact antennas, a method for reflection 
compensation by noise introduction has been tested, model estimates of temperature profiles 
have been performed using data from one-channel measurements (11, 12], and calibration errors 
in brightness temperature measurements have been considered [13). 

1. Thermal Radiation of a Multilayer Medium. Formulation of Converse Problem. 
We will consider the thermal radio radiation of a half-space with multilaver structure having a 
complex dielectric permittivity ε=ε’-iε”, following (10) (Fig.1).  Solution of the electrodynamic 
problem for such a structure allows use of the electric field coherence function at the 
boundary z = 0 to calculate the intensity of thermal radio radiation and its brightness 
temperature in the form 

where λ is the wavelength for layer j 

 

while zN=zN-1. 
The coefficients Bj are determined recursively beginning with B0 = 2/y0 by the expres- 

 

where 
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Fig. 2.  Skin layer thickness vs wavelength: 
1)muscle; 2) fat. 

 

Here c is the speed of light and ε0, µ0 are the electric and magnetic constants, respectively. 

The half-space reflection coefficient is defined by        ' 

 

However, direct use of brightness temperature measurements is complicated, since it is dif-
ficult to perform absolute brightness temperature measurements to the required accuracy (δTB≤ 
0.1 K.) because of uncertainty in the reflection coefficients R, which is caused by the lack of 
sufficient study of dielectric properties of biological media, including their temperature 
dependence (4). 

These difficulties can be overcome successfully by using the method of noise introduction 
to compensate the effect of reflection.  At a noise introduction temperature close to the 
temperature of the medium under study, the effect of reflection can be compensated almost 
completely and calibration error is determined by the accuracies to which the reference 
temperatures and compensation signal temperature Tn are known.  With noise introduction the 
measured brightness temperatures satisfy the equation 

 

where A(λ,z)=B(λ,z)/(l — R).  Knowing the noise temperature Tn and relying on the smallness of 
the second term in Fq. (4), the TB values can be used to determine the integral temperature of 
the medium

 

 

to a high degree of accuracy, even if the constant R is known only a large uncertainty 
(~20%). In contrast to Eq. (1), for T(z) = const = T0, TI(λ) = T0 , which indicates the 
independence of Eq. (5) from the reflection coefficient. 

2 . Soluion of the Converse Problem. Numerica1 Experiment. Equation (5) is an incorrectly 
formulated problem in the sense of [7].  Its solution requires use of significant 
a proori information on the unknown exact solution.  We have used Tikhonov's regularization 
method [7, 8] in the form of the generalized discrepancy principle, which utilizes quite 
general a priory information on the smoothness of exact solution. For compactness we write 
Eq.(5) in the form 
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Fig. 3.  Numerical modeling.  Solid curves, original 
temperature profiles in the form of Eq. (9) with char-
acteristic thickness ∆z=2 cm, amplitude ∆T = 2 K and 
depths of maximum zm =—2 cm (curve 1), zm = -4 cm (curve 2), 
zm = —6 cm (curve 3).  Dashes, reconstructed profiler, δTI 
= 0.1 K. 

 

Fig.4. Numerical modeling.  Solid curves, original 
profiles, depths of maxima zm = -4 cm (curve 1), zm = -6 cm 
(curve 2), ∆z=2 cm , ∆T = 2 K.  Dashes, reconstructed 
profiles with δTI = 0.1 K. 

where a > 0 is a sufficiently large number, TI
δ is the measured realization of the right side, while 

 

TI(λ) is the right side of Eq. (4) corresponding to the exact solution T(z), and δ2 is the 
uncertainty of the measurement.  According to [7, 8] to find the approximate solution of Eq. (6), 
and therefore, Eq. (5), it is necessary to minimize within the space W2

1 (a, b) or the functions 
T(x) (W2

1 is the space of functions summable with a square on (a, b) which also have on (a, b) the 
generalized derivatives also summable with a square (for further detail see [14]) the functional 

 

where X  implies the norm of the function X as an element of the space of the functions 
summable with a square on the corresponding segment (determination of the norm in the space L2 of 
functions summable with a square is described, for example, in [7], p. 35).  For the 
regularization parameter α we choose here a nonnegative number which is a root of the one-
dimensional nonlinear generalized discrepancy equation 

 

where Tα is the function which minimizes functional (7).  We note that within the framework of the 
method of regularizing Fqs. (7), (8) we can easily consider a priori information on the nonnegativaness 
of the exact function.  To do this the minimization of functional (7) must be carried out only on the 
set of nonnegative generally dlfferentiable functions T(Z). And in turn one can reduce to the case in which 
such important a priori information is known as that the unknown exact solution is without doubt larger (or 
without doubt smaller) for all z∈[-a,0] than some a priori specified function. After the corresponding 
discretization the problem of minimization of functional (7) indicated above lead to finite-difference 
analog, which have been well studied from calculation viewpoint of the quadratic programming problem [15]. 
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It should be noted that in the given case, in contrast to the problems considered in [1, 2, 
5, 6] the integrand A(λ,z) of the integral equation suffers discontinuities of the first kind at 
the points zj, where the boundaries of the biological tissue layers with differing dielectric 
properties are located (skin-fat-muscle). Nevertheless, the formalism of the regularization 
method in the form of the generalized discrepancy principle can be applied in the case of 
integrand discontinuities, since the operator A defined by the integrand A(λ,z) is in this case 
too a linear finite operator, acting from the space W2

1 into the space L2(c, d). 
As is well known [1, 2, 5, 6] in solving an incorrect problem the efficiency of a con-

crete- algorithm can be established only by numerical experiment.  On the basis of the method 
presented above algorithms were developed for solution of Eq.(5) and numerical experiments 
were performed which permitted determination of the informative wavelength range, as well as 
requirements for accuracy levels and number of frequency channels needed for various T(z) distributions 
having differing complexities, characteristic thicknesses, and temperature changes.  The 
numerical experiments were performed in the following manner. Values of TI for various 
wavelength were calculated for model T(z) profiles.  A normally distributed error with zero mean and 
specified dispersion was superposed on these values using a random number generator.  The 
integral temperature measurements obtained in this manner were then used for solution of the 
converse problem.  The accuracy of converse problem solution was evaluated by comparing the 
reconstructed temperature profile with the original T(z) profile. 

The numerical experiments showed that the basic types of T(z) profiles could be re-
constructed with good accuracy at measurement accuracies of δTI = 0.01-0.03 K and 
approximately 10 channels in the informative centimeter and decimeter wavelength range.  
However, profiles with a relatively simple (for example, monotonic) structure were 
reconstructed fairly well with minimum measurement accuracy requirements (δTI ~ 0.1 K) and 3-4 
channels. The measurement wavelengths should be chosen such that the thickness of the skin 
laver increases uniformly from several millimeters to maximum values, since, the probing depth 
is determined by the skin-layer thickness ( επλ= ) [6]) of the probed tissues, which Im4/d
depends mainly on the water content in the tissues.  For the basic tissue types the dependence of 
skin layer thickness on λ lies between the curves shown in Fig.2. We will note that the skin layer 
thickness of water varies with change in salinity within practically the same limits [6]. 
Qualitatively the solutions do not depend too greatly on choice of concrete wavelengths, in 
particular, one set which satisfies the conditions formulated would be λi = 2, 10, 30, 60 cm. 

Results of the numerical modeling for a wavelength set λi = 9, 30, 60 cm (the same set used 
in our clinical experiments) are shown in Figs.3-6. The temperature distributions within the 
tissues were specified as a Gaussian profile 

 

Figure 3 shows a reconstruction of T(z) profiles in muscle tissues. In solving the converse problem the limitation 
T(z) ≥ T0 was used, with the error level modeled being δTI = 0.1 K. It is evident that for the given error level the form of the 
profile  and the position of the maximum are well retrieved up to the depth of ≈ 4 cm. For further increase in depth the accuracy 
of the reconstruction decreases, since the contribution of deep layers to the radio emission decreases rapidly.   

As follows from fig.2, a fat layer is more transparent to radiation, and its presence (see Fig.4) does not hinder 
reconstruction of the temperature profile in a tissue layer located deeper beneath it. The accuracy of reconstruction at depth of 
6-8 cm increases (compare reconstructed curve 3 of Fig.3 with analogous curve of Fig.4). 

Figure 5 is an example of reconstruction of a monotonic temperature distribution (zm in Eq. (9) equal to zero). 

It should be noted that with increase in the level of measurement error the accuracy of the reconstruction falls 
rapidly as is illustrated by the results shown in Fig.6. Of basic significance here is not the constant error component, 
which, as a rule, produces only 

*For the definition of linear finite operator in normalized spaces, see, for example, [14]. 
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Fig. 5.  Numerical modeling. Reconstruction of monotonic 
temperature profile (in Eq.(9) zm=0, ∆z=2 cm, ∆T= -2 K. 
Original profile, solid curve; dashes, reconstructions 
with δTI = 0.1 K. 

Fig. 6.  Numerical modeling. Dependence of solution on 
error level modeled. Original profile, solid curve; dashes, 
reconstruction for δTI = 0.1 K; dots, reconstruction for 
δTI = 0.3 K. 

a general shift of the reconstructed profile, but the random component, which destroys the relationship between the integral 
temperatures at different frequencies. 

Of special importance is the role of a priori information in the form of limitations used in solving the converse problem It 
proves to be the case that one-sided limitation also eliminates significant deviations of the solution in the direction opposite the 
limitation, since these deviations cannot be compensated in the integral by deviations to the side where the limitation acts. 
Although the solution is not very critical with respect to the function limiting it from above or below, more precise specification 
of this function allows distinction of the informative part of the integral in Eq.(5), and the quality of the solution increases. We 
must stress that without use of limitations at realizable measurement accuracies it is impossible to solve the converse problem by 
this method to useful accuracy. In connection with this it would be desirable to develop maps of standard temperature 
distributions of human body together with maximum deviations from these distributions for various pathologies. In specifying 
limitations it is also possible to use surface temperature measurements and invasive internal point measurements within tissues.  

High measurement accuracy can be achieved by measuring contrasts in integral temperatures in symmetric or closely 
situated body areas. In this case use of the unperturbed temperature profile of the healthy tissue as the limitation can be effective 
in determining the profile of the disturbance generated by the pathological process. 

It follows from the calculations that for tissue dielectric parameters accuracies of approximately 10% are possible in 
solving the converse problem. The uncertainties in determining layer thickness should be much less than the wavelengths 
within the tissues. 
 3. Reconstruction of Temperature Profile from Clinical Measurement Data. Experimental studies were carried out in the 
Radiophysical laboratory of an oncology clinic. A radiometric system including three radiometric detectors at wavelengths of 
9, 30, and 60 cm  was used. The fluctuation threshold of radiometric sensitivity was not more than 0.05 K for a time constant 
of 1 sec. The measurements were carries out with the technique described in [14]. The compensation signal had a temperature 
Tn = 37±0.2 K, differing from the measured temperatures by not more than 3-4 K. In the calibration process radiation from salt 
water at constant temperatures close to those to be measures was used as a reference. The calibration data indicated that the 
uncertainty of the integral temperature measurements was no more than 0.15 K. 
 
 Figure 7 shows reconstructions of temperature profiles obtained by the radiometric method in the presence of tumor 
processes. Contact temperature measurements were made simultaneously 
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Fig. 7.  Results of reconstruction by experimental three-
channel measurements. Patient Sh.  Tissue structure:  skin, 
1 mm; below: mammary gland (fat, connective tissue) with tumor.  
Solid curves, reconstructed T(z) profile; circles, contact 
measurements. 
Fig. 8.  Temperature profile T(z) reconstructions from 
radiometric data before (curve l) and after (curve 2) uhf 
hyperthermy session.  Patient S.  Tissue structure:  skin, 
1 mm, tumor 1 cm, muscle. Circles, contact measurement 
data. 

on the skin surface and at a depth of 1.5 cm using a needle sensor.  The converse problem 
solution employed the natural limitation T(z) ≥ T(0) and it was assumed that the dielectric 
parameters of the tumor coincided with the corresponding parameters of the surrounding 
tissues. 

For the case presented in Fig.7 the maximum temperature indicated bv the reconstruction 
results was 35.2° C at a depth of 1.5 cm, which practically coincided with the direct measurement 
data. Qualitative one can also judge the elevation of the internal temperature in the tumor directly from the 
integral temperature measurements. Thus, for a surface temperature of T0 = 32.6 

0C the integral temperatures 
were 33.5, 34.6, and 34.3 0C at wavelengths of 9, 30, and 60 cm, respectively. The results presented indicate 
the possibility of diagnostic study and monitoring tumor and inflammatory processes which lead to local 
temperature changes.    

Another important application of radiometric probing could be monitoring the degree of tissue heating in tumor treatment 
by uhf hyprthermy. Temperature profile reconstructions before and after irradiation of tumor are presented in Fig.8. The tumor 
was irradiated by a hyperthrmy system operating at 915 MHz with power output 100 W. The skin surface was cooled by 
circulating water at constant temperatures so that the tissue temperature increases several degrees as the result of radiation. The 
slight temperature elevation before the hyperthermy was carried out is related to processes occurring in the tumor. The results 
presented indicate the good agreement of the reconstructed temperature values with contact measurement data at depth of 
1.5 cm. 
Thus the results obtained indicate the real promise as well as the limitations of the radiometric 

probing method for determining the temperature distribution over depth of a body by multifrequency 
measurements of thermal radio emission. In addition the results provide a methodological and algorithmic 
base for solving similar problems of probing other media with multiplayer dielectric structure. Progress in 
studies in this field will be related both to improvement in radiometric equipment and calibration methods 
to achieve higher measurement accuracy, and to further development of ever more precise methods and 
algorithms for solution of the converse problem with consideration of all available a priori information. 
As the numerical experiments show, the accuracy of reconstruction can be improved by increasing the number 
of measurement channels. In particular, inclusion of a channel with wavelength of 2-3 cm which provides 
information on tissue layers close to the surface is useful (Fig.2). The dielectric parameter values of 
various tissues must be refined and maps of body temperature distribution created. Solution of these 
problems could provide a new noninvasive instrument for diagnostics and monitoring of illnesses involving 
lical temperature changes within body tissues.   
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